Skip to main content
Log in

A spinel to β-phase transformation mechanism in (Mg,Fe)2SiO4

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

Olivine of approximate composition Mg1.8Fe0.2SiO4 is a major constituent of the Earth's upper mantle. Structural changes, which occur in olivine as a function of increasing pressure and which involve the formation of the β-phase and spinel structure, γ-phase polymorphs, have therefore aroused considerable interest1–4. The mechanisms of these transformations are of particular importance because of their effect on the properties of the mantle in the zone in which they occur. Several mechanisms have been proposed4–7, but remain controversial in the absence of sufficient observational data on intergrowths of reactant and product phases. Although these phases have been produced experimentally2, direct observations of such inter-growths have generally been made only on natural material from shock-produced veins in chondritic meteorites5,6,8. Here we report observations made on the natural, high-density polymorphs of (Mg,Fe)2SiO4 found in the Peace River meteorite, which reveal that the mechanism for the spinel to β-phase transformation involves the topotactic replacement of the spinel polymorph by single, β-phase grains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bernal, J. D. Observatory 59, 268 (1936).

    Google Scholar 

  2. Ringwood, A. E. & Major, A. Phys. Earth planet. Inter. 3, 89 (1970).

    Article  ADS  CAS  Google Scholar 

  3. O'Keeffe, M. & Hyde, B. G. Nature 293, 727 (1981).

    Article  ADS  CAS  Google Scholar 

  4. Sung, C.-M. and Burns, R. G. Phys. Chem. Miner. 2, 177 (1978).

    Article  ADS  CAS  Google Scholar 

  5. Putnis, A. & Price, G. D. Nature 280, 217 (1979).

    Article  ADS  CAS  Google Scholar 

  6. Price, G. D., Putnis, A. & Agrell, S. O. Contr. Miner. Petrol. 71, 211 (1979).

    Article  ADS  CAS  Google Scholar 

  7. Poirer, J. P. Phys. Earth planet. Inter. 26, 176 (1981).

    ADS  Google Scholar 

  8. Madon, M. & Poirer, J. P. Science 207, 66 (1980).

    Article  ADS  CAS  Google Scholar 

  9. Veyssiere, P., Rabier, J. & Grilhe, J. Phys. Stat. Sol. A 31, 605 (1975).

    Article  ADS  CAS  Google Scholar 

  10. Morimoto, N., Akimoto, S., Koto, S. & Tokohami, M. Phys. Earth planet. Inter. 3, 161 (1970).

    Article  ADS  CAS  Google Scholar 

  11. Moore, P. B. & Smith, J. V. Phys. Earth planet. Inter. 3, 166 (1970).

    Article  ADS  CAS  Google Scholar 

  12. Folinsbee, R. E. & Bayrock, L. A. J. R. astr. Soc. Canada 58, 109 (1964).

    ADS  CAS  Google Scholar 

  13. Binns, R. A. Phys. Earth planet. Inter. 3, 156 (1970).

    Article  ADS  CAS  Google Scholar 

  14. Smith, J. V. & Mason, B. Science 168, 832 (1970).

    Article  ADS  CAS  Google Scholar 

  15. Coleman, L. C. Can. Miner. 15, 97 (1977).

    Google Scholar 

  16. Steele, I. M. & Smith, J. V. Lunar planet. Sci. 9, 1101 (1978).

    ADS  Google Scholar 

  17. Van der Biest, O. & Thomas, G. Phys. Stat. Sol. A 24, 65 (1974).

    Article  ADS  CAS  Google Scholar 

  18. Akimoto, S., Matsui, Y. & Syono, Y. in Physics and Chemistry of Minerals and Rocks (ed. Strens, R. G. J.) (Wiley, London, 1974).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Price, G., Putnis, A. & Smith, D. A spinel to β-phase transformation mechanism in (Mg,Fe)2SiO4. Nature 296, 729–731 (1982). https://doi.org/10.1038/296729a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/296729a0

  • Springer Nature Limited

This article is cited by

Navigation