Skip to main content
Log in

A new model for white dwarf supernovae

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

We show here that carbon–oxygen white dwarfs in close binary systems are likely progenitors of neutron stars and Type I supernovae (SN I). This conclusion is supported by different effects associated with crystallization of the carbon–oxygen mixture at relatively low temperatures (T ≲ 5×107 K) and high densities (ρ ≳ 5×109g cm−3). In particular, the existence of a pronounced eutectic in the phase diagram of carbon–oxygen mixtures induces carbon–oxygen separation, with oxygen settling at the star's centre and carbon being rejected to lower-density layers. This not only favours ‘quiet’ or non-explosive collapse, but it may also induce off-centre ignitions at variable depths. We discuss their possible correspondence with the ‘fast’ to ‘slow’ SN I range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Starrfield, S., Truran, J. W., Sparks, W. M. & Kutter, G. S. Astrophys. J. 176, 169 (1972).

    Article  ADS  CAS  Google Scholar 

  2. Whelan, J. & Iben, I. Astrophys. J. 186, 1007 (1973).

    Article  ADS  CAS  Google Scholar 

  3. Canal, R. & Schatzman, E. Astr. Astrophys. 46, 229 (1976).

    ADS  CAS  Google Scholar 

  4. Colgate, S. A., Petschek, A. G. & Kriese, J. T. Astrophys. J. Lett. 237, L81 (1980).

    Article  ADS  CAS  Google Scholar 

  5. Arnett, W. D. Preprint (Enrico Fermi Institute, University of Chicago, 1981).

  6. Mazurek, T. J. & Wheeler, J. C. Fundamentals cosmic Phys. 5, 193 (1980).

    ADS  CAS  Google Scholar 

  7. Woosley, S. E., Weaver, T. A. & Taam, R. E. in Proc. Texas Workshop on Type I Supernovae, 96 (1980).

    Google Scholar 

  8. Nomoto, K. in Proc. Texas Workshop on Type I Supernovae, 164 (1980).

    Google Scholar 

  9. Canal, R., Isern, J. & Labay, J. Astrophys. J. Lett. 241, L33 (1980).

    Article  ADS  CAS  Google Scholar 

  10. Canal, R., Isern, J. & Labay, J. Space Sci. Rev. 27, 595 (1980).

    Article  ADS  Google Scholar 

  11. Canal, R., Isern, J. & Labay, J. in Proc. NATO Advanced Study Institute on Supernovae, Cambridge (in the press).

  12. Canal, R. & Isern, J. Proc. IAU Colloq. No. 53, 52 (1979).

  13. Mazurek, T. J., Meier, D. C. & Wheeler, J. C. Astrophys. J. 213, 518 (1977).

    Article  ADS  CAS  Google Scholar 

  14. Paczynski, B. & Zytkow, A. Astrophys. J. 222, 604 (1978).

    Article  ADS  CAS  Google Scholar 

  15. Stevenson, D. J. J. Phys. Suppl. 41, C2–53 (1980).

    Google Scholar 

  16. Pollock, E. L. & Hansen, J. P. Phys. Rev. A8, 3110 (1973).

    Article  ADS  CAS  Google Scholar 

  17. Lamb, D. Q. & Van Horn, H. M. Astrophys. J. 200, 306 (1975).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Canal, R., Isern, J. & Labay, J. A new model for white dwarf supernovae. Nature 296, 225–226 (1982). https://doi.org/10.1038/296225a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/296225a0

  • Springer Nature Limited

This article is cited by

Navigation