Skip to main content
Log in

Simulated cross-bridge patterns corresponding to ciliary beating in Paramecium

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

It is generally accepted that bending of a cilium is caused by active sliding between outer doublets in the cilium produced by ATP-driven activation of their dynein–tubulin cross-bridges1–3. Changes with time in the location and extent of the active sliding regions in the outer doublets are thought to be primarily responsible for the changing shape of a beating cilium. However, using conventional techniques of biochemistry and electron microscopy, it is difficult to identify the regions on the outer doublets where active sliding occurs4. Here we have used computer simulation of the beating of a cilium to investigate changes in the distribution of activated cross-bridges, and hence of active sliding, in the nine outer doublets. Hereafter, the pattern of this distribution will be termed ‘cross-bridge pattern’. Published data have indicated that there is a periodically changing series of cross-bridge patterns in the nine outer doublets. On this assumption, the computer mimicked relatively well the beating of a cilium of Paramecium in media of both normal and high viscosity. The computer also simulated flagellar-type beating5, in which the cross-bridge patterns were modified slightly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Satir, P. J. Cell Biol. 26, 805–834 (1965).

    Article  CAS  Google Scholar 

  2. Satir, P. J. Cell Biol. 39, 77–94 (1968).

    Article  CAS  Google Scholar 

  3. Summers, K. E. & Gibbons, I. R. Proc. natn. Acad. Sci. U.S.A. 68, 3092–3096 (1971).

    Article  ADS  CAS  Google Scholar 

  4. Omoto, C. K. & Kung, C. J. Cell Biol. 87, 33–46 (1980).

    Article  CAS  Google Scholar 

  5. Kuznizki, L., Jahn, T. L. & Fonseca, J. R. J. Protozool. 17, 16–24 (1970).

    Article  Google Scholar 

  6. Ikeda, K., Nishihara, S., Isohama, K. & Nakayama, K. J. Inf. Processing 2, 231 (1980).

    Google Scholar 

  7. Sale, W. S. & Satir, P. Proc. natn. Acad. Sci. U.S.A. 74, 2045–2049 (1977).

    Article  ADS  CAS  Google Scholar 

  8. Yano, Y. & Miki-Noumura, T. J. Cell Sci. 44, 169–186 (1980).

    CAS  PubMed  Google Scholar 

  9. Kamimura, S. & Takahashi, K. Zool. Mag, Tokyo 88, 513 (1979).

    Google Scholar 

  10. Lindemann, C. B., Rudd, W. G. & Rikmenspoel, R. Biophys. J. 13, 437–448 (1973).

    Article  CAS  Google Scholar 

  11. Shingyoji, C., Murakami, A. & Takahashi, K. Nature 265, 269–270 (1977).

    Article  ADS  CAS  Google Scholar 

  12. Kuznicki, L. Acta protozool. 1, 301–312 (1963).

    CAS  Google Scholar 

  13. Naitoh, Y. Science 154, 660–662 (1966).

    Article  ADS  CAS  Google Scholar 

  14. Eckert, R. & Naitoh, Y. J. gen. Physiol. 55, 467–483 (1970).

    Article  CAS  Google Scholar 

  15. Gray, J. Ciliary Movement (Cambridge University Press, 1928).

    Google Scholar 

  16. Wais-Steider, J. & Satir, P. J. supramolec. Struct. 11, 339–347 (1979).

    Article  CAS  Google Scholar 

  17. Sugino, K. & Naitoh, Y. Zool Mag, Tokyo 89, 444 (1980).

    Google Scholar 

  18. Bradfield, J. R. G. Symp. Soc. exp. Biol. 9, 306–334 (1955).

    Google Scholar 

  19. Afzelius, B. J. biophys. biochem. Cytol. 5, 269–281 (1959).

    Article  CAS  Google Scholar 

  20. Machemer, H. Acta protozool. 11, 295–300 (1970).

    Google Scholar 

  21. Machemer, H. J. exp. Biol. 57, 239–259 (1972).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sugino, K., Naitoh, Y. Simulated cross-bridge patterns corresponding to ciliary beating in Paramecium. Nature 295, 609–611 (1982). https://doi.org/10.1038/295609a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/295609a0

  • Springer Nature Limited

This article is cited by

Navigation