Skip to main content
Log in

Effect of constraints, solvent and crystal environment on protein dynamics

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

Both experimental and theoretical techniques1,2 for the study of the internal dynamics of globular proteins are being used to delineate the highly varied motional phenomena that can occur and to relate them to specific protein functions. The method of molecular dynamics has been shown to be a powerful theoretical tool for probing the internal motions on a subnanosecond time scale2–7. Previous calculations have, however, been restricted to a protein molecule in vacuum. To determine the effect of the environment on the dynamics, a protein in solution has been simulated with a simplified solvent model and the results compared with those obtained in vacuum and in a static crystalline environment. We report here that the presence of solvent, which results in a time-average structure closer to the native structure than the vacuum simulation, produces small alterations in the magnitudes and some changes in the decay times of the fluctuations in the interior of the protein; for surface residues, both the magnitude and the time course of the motions are altered significantly by the solvent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gurd, F. & Rothgeb, T. M. Adv. Protein Chem. 35, 73–165 (1979).

    Article  Google Scholar 

  2. Karplus, M. & McCammon, J. A. CRC Crit. Rev. Biochem. 9, 293–349 (1981).

    Article  CAS  Google Scholar 

  3. McCammon, J. A., Gelin, B. R. & Karplus, M. Nature 267, 505–590 (1977).

    Article  Google Scholar 

  4. McCammon, J. A., Wolynes, P. G. & Karplus, M. Biochemistry 18, 927–942 (1979).

    Article  CAS  Google Scholar 

  5. Karplus, M. & McCammon, J. A. Nature 277, 578 (1979).

    Article  ADS  CAS  Google Scholar 

  6. Levitt, M. in Protein Folding (ed. Jaeniche, R.) (Elsevier/North-Holland, Amsterdam, 1980).

    Google Scholar 

  7. Northrup, S. H., Pear, M. R., McCammon, J. A. & Karplus, M. Nature 286, 304–305 (1980).

    Article  ADS  CAS  Google Scholar 

  8. Gelin, B. R. & Karplus, M. Biochemistry 18, 1256–1269 (1979).

    Article  CAS  Google Scholar 

  9. van Gunsteren, W. F. & Karplus, M. J. Am. chem. Soc. (in the press).

  10. Stillinger, F. H. & Rahman, A. J. chem. Phys. 57, 1281–1292 (1972).

    Article  ADS  CAS  Google Scholar 

  11. Deisenhofer, J. O. & Steigemann, W. R. Acta crystallogr. B31, 238–250 (1975).

    Article  Google Scholar 

  12. Ryckaert, J.-P., Ciccotti, G. & Berendsen, H. J. C. J. comput. Phys. 23, 327–341 (1977).

    Article  ADS  CAS  Google Scholar 

  13. van Gunsteren, W. F. & Berendsen,H. J. C. Molec. Phys. 34, 1311–1327 (1977).

    Article  ADS  CAS  Google Scholar 

  14. van Gunsteren, W. F. & Karplus, M. J. comput. Chem. 1, 266–274 (1980).

    Article  CAS  Google Scholar 

  15. Gelin, B. R. & Karplus, M. Proc. natn. Acad. Sci. U.S.A. 72, 2002–2006 (1975).

    Article  ADS  CAS  Google Scholar 

  16. Karplus, M. & Kushick, J. N. Macromolecules 14, 325–332 (1981).

    Article  ADS  CAS  Google Scholar 

  17. Northrup, S. H., Pear, M. R., McCammon, J. A., Karplus, M. & Takano, T. Nature 287, 659–660 (1980).

    Article  ADS  CAS  Google Scholar 

  18. Frauenfelder, H., Petsko, G. & Tsernoglou, A. Nature 280, 558–563 (1979).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

van Gunsteren, W., Karplus, M. Effect of constraints, solvent and crystal environment on protein dynamics. Nature 293, 677–678 (1981). https://doi.org/10.1038/293677a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/293677a0

  • Springer Nature Limited

This article is cited by

Navigation