Skip to main content

Advertisement

Log in

Gait and the energetics of locomotion in horses

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

It seems reasonable that quadrupeds should change gait from a walk to a trot to a gallop in such a way as to minimize their energy consumption, as human beings are known1 to change from a walk to a run at a particular speed (2.4 m s−1) below which walking requires less energy than running and above which the opposite is true. Thus by changing gait, human beings keep the energy cost of locomotion to a minimum as their speed increases. One reason this relation holds is that in humans, metabolic rate increases curvilinearly with walking speed1. If metabolism were a curvilinear function of speed within each of the gaits used by quadrupeds, it would support the hypothesis that they also change gait to minimize energetic cost. There is an old controversy about whether metabolic rate increases linearly or curvilinearly in running humans1,2 but all previous reports have suggested that metabolic rate increases linearly with speed in quadrupeds. Extended gaits were an important experimental tool in the study of human gait changes; thus we have trained three small horses (110–170 kg) to walk, trot and gallop on a motorized treadmill, and to extend their gaits on command. We report here that, using measurements of rates of oxygen consumption as an indicator of rates of energy consumption, we have confirmed that the natural gait at any speed indeed entails the smallest possible energy expenditure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Margaria, R. Atti. Acca. naz.Lincei Rc. 6, 7 (1938).

    Google Scholar 

  2. Knuttgen, H. G. Acta physiol. scand. 52, 366–371 (1961).

    Article  CAS  Google Scholar 

  3. Pennycuick, C. J. J. exp. Biol. 63, 775–799 (1975).

    Google Scholar 

  4. Seeherman, H. J., Taylor, C. R., Maloiy, G. M. O. & Armstrong, R. B. Resp. Physiol. (in the press).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hoyt, D., Taylor, C. Gait and the energetics of locomotion in horses. Nature 292, 239–240 (1981). https://doi.org/10.1038/292239a0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/292239a0

  • Springer Nature Limited

This article is cited by

Navigation