Skip to main content

Advertisement

Log in

Defective repair of alkylated DNA by human tumour and SV40-transformed human cell strains

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

We have identified a group of 8 (among 39) human tumour cell strains deficient in the ability to support the growth of adenovirus 5 preparations treated with N-methyl-N′-nitro-N-nitrosoguanidine (MNNG), but able to support the growth of non-treated adenovirus normally1,2. This deficient behaviour defines the Mer phenotype2. Strains having the Mer phenotype were found to arise from tumours originating in four different organs. Relative to Mer+ strains, Mer tumour strains showed greater sensitivity to MNNG-produced killing, greater MNNG-stimulated ‘DNA repair’ synthesis and a more rapid MNNG-produced decrease in semi-conservative DNA synthesis2. Here we report that (1) Mer strains are deficient in removing O6-methylguanine (O6-MeG) from their DNA after [Me-14C]MNNG treatment (Table 1); (2) Mer tumour strains originate from tumours arising in patients having Mer+ normal fibroblasts (Fig. 1a, b); (3) SV40 transformation of (Mer+) human fibroblasts often converts them to Mer strains (Fig. 1c, d): (4) MNNG produces more sister chromatid exchanges (SCEs) in Mer than in Mer+ cell strains (Fig. 2).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Day, R. S. III & Ziolkowski, C. H. J. Nature 279, 797–799 (1979).

    Article  ADS  CAS  Google Scholar 

  2. Day, R. S. III, Ziolkowski, C. H. J., Scudiero, D. A., Meyer, S. A. & Mattern, M. R. Carcinogenesis 1, 21–32 (1980).

    Article  CAS  Google Scholar 

  3. Montesano, R., Bresil, H. & Margison, G. P. Cancer Res. 39, 1798–1802 (1979).

    CAS  Google Scholar 

  4. Bodell, W. J., Singer, B., Thomas, G. H. & Cleaver, J. E. Nucleic Acids Res. 6, 2819–2829 (1979).

    Article  CAS  Google Scholar 

  5. Altamirano-Dimas, M., Sklar, R. & Strauss, B. Mutat. Res. 60, 197–206 (1979).

    Article  CAS  Google Scholar 

  6. Singer, B. J. natn. Cancer Inst. 62, 1329–1339 (1979).

    CAS  Google Scholar 

  7. Scudiero, D. A. Cancer Res. 40, 984–990 (1980).

    CAS  PubMed  Google Scholar 

  8. Kaplan, M. M., Giard, D. J., Blattner, W. A., Lubiniecki, A. S. & Fraumeni, J. F. Jr Proc. Soc. exp. Biol. Med. 148, 660–664 (1975).

    Article  CAS  Google Scholar 

  9. Latt, S. A. Proc. natn. Acad. Sci. U.S.A. 71, 3162–3166 (1974).

    Article  ADS  CAS  Google Scholar 

  10. Perry, P. & Evans, H. J. Nature 258, 121–125 (1975).

    Article  ADS  CAS  Google Scholar 

  11. Carrano, A. V., Thompson, L. H., Lindl, P. A. & Minkler, J. L. Nature 270, 551–553 (1978).

    Article  ADS  Google Scholar 

  12. Wolff, S. A., Rodin, B. & Cleaver, J. E. Nature 265, 347–349 (1977).

    Article  ADS  CAS  Google Scholar 

  13. De Weerd-Kastelein, E. A., Keijzer, W., Rainaldi, G. & Bootsma, D. Mutat. Res. 45, 253–261 (1977).

    Article  CAS  Google Scholar 

  14. Baker, R. M., Van Voorhis, W. C. & Spencer, L. A. Proc. natn. Acad. Sci. U.S.A. 76, 5249–5253 (1979).

    Article  ADS  CAS  Google Scholar 

  15. Baker, R. M., Zuerndorfer, G. & Mandel, R. Environ. Mutagenesis 2, 269–270 (1980).

    Google Scholar 

  16. Goth-Goldstein, R. Nature 267, 81–82 (1977).

    Article  ADS  CAS  Google Scholar 

  17. Erickson, L. C., Laurent, G., Sharkey, N. A. & Kohn, K. Nature 288, 727–729 (1980).

    Article  ADS  CAS  Google Scholar 

  18. Girardi, A. J., Jensen, F. C. & Koprowski, H. J. cell. comp. Physiol. 65, 69–84 (1965).

    Article  CAS  Google Scholar 

  19. Day, R. S. III Photochem. Photobiol. 19, 9–13 (1974).

    Article  CAS  Google Scholar 

  20. Goto, K., Maeda, S., Kano, Y. & Sugiyama, T. Chromosoma 66, 351–359 (1978).

    Article  CAS  Google Scholar 

  21. Perry, P. & Wolff, S. Nature 251, 156–158 (1974).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Day, R., Ziolkowski, C., Scudiero, D. et al. Defective repair of alkylated DNA by human tumour and SV40-transformed human cell strains. Nature 288, 724–727 (1980). https://doi.org/10.1038/288724a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/288724a0

  • Springer Nature Limited

This article is cited by

Navigation