Skip to main content
Log in

Effects of leaf age and plant life history patterns on herbivory

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

Current theories on plant–herbivore interactions suggest that plant species of different successional status and leaves of various ages differ in their degree of ephemerality and predictability to herbivores, and will therefore exhibit different anti-herbivore characteristics1–6. Old leaves and leaves of mature forest plants are expected to be better defended than ephemeral young leaves and leaves of early successional plants. These predicted patterns of plant defence and the resultant patterns of insect grazing are not well documented for natural communities. Field studies have shown that mammalian herbivores in a tropical forest prefer young leaves7 and that insect grazing in a temperate forest is heaviest on the young leaves8. Laboratory studies have shown that late successional species9,12 or plants with certain chemical defences13–17 are less palatable for generalist herbivores. Laboratory results depend, however, on the particular herbivore tested, and may not accurately predict rates of herbivory in natural systems. Here I report on rates of herbivory on young and mature leaves from tree species with different life history patterns. Grazing rates (% leaf area eaten per day) on mature leaves of fast growing, shade-intolerant species (pioneers) were an order of magnitude greater than those on slow growing, shade-tolerant species (persistents). Young leaves in both groups of species suffered significantly greater grazing damage than mature leaves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gates, R. G. & Rhoades, D. F. Biochem. Syst. Ecol 5, 185–193 (1977).

    Article  Google Scholar 

  2. Feeny, P. P. in Coevolution of Animals and Plants (eds Gilbert, L. E. & Raven, P. H.) 3–19 (University of Texas Press, Austin, 1975); in Biochemical Interaction Between Plants and Insects (eds Wallace, J. W. & Mansell, R. L.) 1–40 (Plenum, New York, 1976).

    Google Scholar 

  3. Rhoades, D. F. & Gates, R. G. in Biochemical Interaction Between Plants and Insects (eds Wallace, J. W. & Mansell, R. L.) 168–213 (Plenum, New York, 1976).

    Book  Google Scholar 

  4. Rhoades, D. F. in Herbivores: Their Interrelationships with Plant Secondary Constituents (eds Rosenthal, G. A. & Janzen, D. H.) 3–54 (Academic, New York, 1979).

    Google Scholar 

  5. Feeny, P. P. Ecology 51, 565–581 (1970).

    Article  Google Scholar 

  6. Dement, W. A. & Mooney, H. A. Oecologia 15, 65–76 (1974).

    Article  ADS  Google Scholar 

  7. Milton, K. Am. Nat. 114, 362–378 (1979).

    Article  ADS  CAS  Google Scholar 

  8. Reichle, D. E., Goldstein, R. A., Van Hook, R. I. & Dodson, G. J. Ecology 54, 1076–1084 (1973).

    Article  Google Scholar 

  9. Gates, R. G. & Orians, G. H. Ecology 56, 410–418 (1975).

    Article  Google Scholar 

  10. Freeland, W. J. & Winter, J. W. J. chem. Ecol. 1, 439–455 (1975).

    Article  Google Scholar 

  11. Grime, J. P., MacPherson-Stewart, S. F. & Dearman, R. S. J. Ecol. 56, 405–420 (1968).

    Article  Google Scholar 

  12. Otte, D. Oecologia 18, 129–144 (1975).

    Article  ADS  Google Scholar 

  13. Bernays, E. A. & Chapman, R. F. Ecol. Ent. 2, 1–18 (1977).

    Article  Google Scholar 

  14. Cooper-Driver, G. A. & Swain, T. Nature 260, 604 (1976).

    Article  ADS  CAS  Google Scholar 

  15. Gates, R. G. Ecology 56, 391–400 (1975).

    Article  Google Scholar 

  16. Feeny, P. P. J. Insect Phys. 14, 805–817 (1968).

    Article  CAS  Google Scholar 

  17. Jones, D. A. in Phytochemical Ecology (ed. Harborne, J. B.) 103–124 (Academic, New York, 1972).

    Google Scholar 

  18. Hartshorn, G. S. in Tropical Trees as Living Systems (eds Tomlinson, P. B. & Zimmerman, M. H.) 617–638 (Cambridge University Press, Cambridge, Mass. 1978).

    Google Scholar 

  19. Aubreville, A. in World Vegetation Types (ed. Eyre, S. R.) 41–55 (Columbia University Press, New York, 1971).

    Google Scholar 

  20. Whitmore, T. C. Tropical Rain Forests of the Far East (Clarendon, Oxford, 1975); in Tropical Trees as Living Systems (eds Tomlinson, P. B. & Zimmerman, M. H.) 639–655 (Cambridge University Press, 1978).

    Google Scholar 

  21. Bray, J. R. Ecology 37, 598–600 (1956).

    Article  Google Scholar 

  22. Schulz, J. P. Verh. K. Ned. Akad. Wet. Afd. natuurkd Tweed. Reeks. 53, 1–367 (1960).

    Google Scholar 

  23. van Steenis, C. G. G. J. Proc. Kandy Symp. on Study of Trop. Veg. 159–163 (UNESCO, Paris, 1956).

  24. McKey, D. Science 202, 61–64 (1978).

    ADS  Google Scholar 

  25. Oates, J. F., Swain, T. & Zantovska, J. Biochem. Syst. Ecol. 5, 317–321 (1977).

    Article  CAS  Google Scholar 

  26. Dixon, A. F. G. in Animal Populations in Relation to Their Food Resources (ed. Watson, A.) 271–287 (Br. Ecol. Soc., London 1970).

    Google Scholar 

  27. Oelberg, K. J. Range Mgmt 9, 220–225 (1956).

    Article  Google Scholar 

  28. Rhoades, D. F. Biochem. Syst. Ecol. 5, 281–290 (1977); in The Biology and Chemistry of the Creosotebush in New World Deserts (eds Mabry, T. J., Hunziker, J. & DiFeo, D. R.) 135–175 (Dowden, Hutchinson and Ross, Stroudsburg, 1977).

    Google Scholar 

  29. Janzen, D. H. Ecology 52, 964–979 (1971).

    Article  Google Scholar 

  30. McKey, D. Am. Nat. 108, 305–320 (1974).

    Article  ADS  Google Scholar 

  31. Knight, D. H. Ecol. Monogr. 45, 259–284 (1975).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Coley, P. Effects of leaf age and plant life history patterns on herbivory. Nature 284, 545–546 (1980). https://doi.org/10.1038/284545a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/284545a0

  • Springer Nature Limited

This article is cited by

Navigation