Skip to main content
Log in

Sequence-dependent variations in the backbone geometry of a synthetic DNA fibre

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

There are many examples of proteins which interact with specific DNA sequences (see references cited in refs 1 and 2). It is not clear whether specificity is derived from proteins sensing directly the base sequence of the DNA or is a result of unique secondary or tertiary structural features induced by certain DNA sequences. Recent studies have indicated the occurrence of several types of symmetries and sequence irregularities in DNA regions which interact with regulatory proteins, but they do not provide information on three-dimensional structure3. The Watson–Crick base-paired double helix can be observed in different conformations4–6, depending on humidity and salt concentration. Within the limited resolution of X-ray fibre diffraction at high relative humidity and in the appropriate salt conditions, studies indicate that natural DNA as well as synthetic repeating polynucleotide duplexes adopt essentially the same average secondary structure, namely the B conformation7. This implies that all residues adopt a single backbone conformation. Recently, however, a high-resolution proton NMR study8 has demonstrated that a change from a regular conformation may occur at the junction region of block copolymers. 31P NMR studies strongly suggest that alternating polynucleotides can have alternating backbone conformations in solution9,10. Klug et al.11 have proposed an alternating structure for poly(dAdT)·poly(dAdT), based on a single crystal X-ray diffraction study of the tetranucleotide, dA-dT-dA-dT (ref. 12). We report here structural 31P NMR studies which show the existence of such variation in the fibre form of a synthetic DNA, poly(dAdT)·poly(dAdT). This confirms our earlier conclusion13 that natural DNA has a non-uniform backbone conformation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wells, R. D. et al. CRC Crit. Rev. Biochem. 4, 305–340 (1977).

    Article  CAS  Google Scholar 

  2. Davidson, E. H. & Britten, R. J. Science 204, 1052–1059 (1979).

    Article  ADS  CAS  Google Scholar 

  3. Dykes, G., Bambara, R., Marians, K. & Wu, R. Nucleic Acids Res. 2, 327–345 (1975).

    Article  CAS  Google Scholar 

  4. Langridge, R. et al. J. molec. Biol. 2, 38–64 (1960).

    Article  CAS  Google Scholar 

  5. Marvin, D. A., Spencer, M., Wilkins, M. H. F. & Hamilton, L. D. J. molec. Biol. 3, 547–565 (1961).

    Article  CAS  Google Scholar 

  6. Fuller, W., Wilkins, M. H. F., Wilson, H. R. & Hamilton, L. D. J. molec. Biol. 12, 60–76 (1965).

    Article  CAS  Google Scholar 

  7. Arnott, S., Chandrasekaran, R. & Selsing, E. Structure and Conformation of Nucleic Acids and Protein-Nucleic Acid Interactions (eds Sundralingam, M. & Rao, S. T.) 577–496 (University Park Press, Baltimore, 1975).

    Google Scholar 

  8. Early, T. A., Kearns, D. R., Burd, J. F., Larson, J. E. & Wells, R. D. Biochemistry 16, 541–551 (1977).

    Article  CAS  Google Scholar 

  9. Patel, D. J., Canuel, L. L. & Pohl, F. M. Proc. natn. Acad. Sci. U.S.A. 76, 2508–2511 (1979).

    Article  ADS  CAS  Google Scholar 

  10. Shindo, H., Simpson, R. T. & Cohen, J. S. J. biol. Chem. 254, 8125–8128 (1979).

    CAS  PubMed  Google Scholar 

  11. Klug, A. et al. J. molec. Biol. 131, 669–680 (1979).

    Article  CAS  Google Scholar 

  12. Viswamitra, M. A. et al. Nature 273, 687–688 (1978).

    Article  ADS  CAS  Google Scholar 

  13. Shindo, H., Wooten, J. B., Pheiffer, B. H. & Zimmerman, S. B. Biochemistry (in the press).

  14. Davies, D. R. & Baldwin, R. L. J. molec. Biol. 6, 251–255 (1963).

    Article  CAS  Google Scholar 

  15. Lin, S. & Riggs, A. D. Nature 228, 1184–1186 (1970).

    Article  ADS  CAS  Google Scholar 

  16. Riggs, A. D., Lin, S. & Wells, R. D. Proc. natn. Acad. Sci. U.S.A. 69, 761–764 (1972).

    Article  ADS  CAS  Google Scholar 

  17. Lin, S. & Riggs, A. D. J. molec. Biol. 72, 671–690 (1972).

    Article  CAS  Google Scholar 

  18. Kelsey, D. E., Rounds, T. C. & York, S. S. Proc. natn. Acad. Sci. U.S.A. 2649–2653 (1979).

  19. Scheffler, I. E., Elson, E. L. & Baldwin, R. L. J. molec. Biol. 36, 291–304 (1968).

    Article  CAS  Google Scholar 

  20. Zimmerman, S. B. & Pheiffer, B. H. Proc. natn. Acad. Sci. U.S.A. 76, 2703–2707 (1979).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shindo, H., Zimmerman, S. Sequence-dependent variations in the backbone geometry of a synthetic DNA fibre. Nature 283, 690–691 (1980). https://doi.org/10.1038/283690a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/283690a0

  • Springer Nature Limited

Navigation