Skip to main content
Log in

Test of the inverse Compton model for Cygnus X-1

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

The X-ray spectrum of Cygnus X-1 from ∼1 keV to ∼200 keV exhibits two distinct components. The spectrum below ∼10 keV is soft and may be the tail of comptonised black body if the turnover at ∼1 keV is real, while that above ∼10 keV is a simple power law1,2. The spectra above 200 keV remain uncertain with some showing a cutoff but others a continuation of the power law3. The power law hard spectrum is thought to be the result of unsaturated Compton up-scattering of soft photons by hot thermal electrons4. The comptonisation region may be the optically thin inner part of the disk or spherical accretion flow near the black hole or a hot corona surrounding a thin disk1. The unsaturated Compton model is attractive as it accounts for the power law spectrum with index α ∼ 1 (Ivvα) and the alleged high electron temperature (Te >109K). However, there are still questions about the origin of the soft photon supply and stability. As important conclusions are drawn from this model (for example, interpretation of the high energy cutoff as a measure of the electron temperature and α as a measure of the Komponeet parameter y ≡ (4kTe/mec22es ≃ 4/(3α + α2), τes ≡ electron scattering depth)4,5, it is crucial to have independent verification of this idea. We propose here a more critical test and show that the hard X-ray data available to date strongly support this model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Eardley, D. M., Lightman, A. P., Shakura, N. I., Shapiro, S. L. & Sunyaev, R. A. Comments Astrophys. 7, 151 (1978).

    ADS  Google Scholar 

  2. Oda, M. Space Sci. Rev. 20, 757 (1977).

    Article  ADS  Google Scholar 

  3. Mandrou, P., Niel, M., Vedrenne, G., Dupont, A. & Hurley, K. Astrophys. J. 219, 288 (1978).

    Article  ADS  Google Scholar 

  4. Shapiro, S., Lightman, A. P. & Eardley, D. M. Astrophys. J. 204, 187 (1976).

    Article  ADS  Google Scholar 

  5. Sunyaev, R. A. & Titarchuk, L. G. Preprint No. 441 (USSR Space Research Institute, 1979).

  6. Katz, J. I. Astrophys. J. 206, 910 (1976).

    Article  ADS  Google Scholar 

  7. Heise, J. et al. Nature 256, 107 (1975).

    Article  ADS  CAS  Google Scholar 

  8. Dolan, J. F., Crannell, C. J., Dennis, B. R., Frost, K. J. & Orwig, L. E. Astrophys. J. 230, 551 (1979).

    Article  ADS  CAS  Google Scholar 

  9. Liang, E. P. T. & Thompson, K. A. Astrophys. J. Lett. (submitted).

  10. Tananbaum, H., Gursky, H., Kellogg, E., Giaconni, R. & Jones, C. Astrophys. J. Lett. 177, L5 (1972).

    Article  ADS  Google Scholar 

  11. Sandford, P. W., Ives, J. C., Bell-Burnell, S. J., Mason, K. O. & Murdin, P. Nature 261, 213 (1976).

    Article  Google Scholar 

  12. Coe, M. J., Engel, A. R. & Quenby, J. J. Nature 259, 544 (1976).

    Article  ADS  CAS  Google Scholar 

  13. Holt, S. S., Boldt, E. A., Kaluzienski, L. J. & Serlemitsos, P. J. Nature 256, 108 (1975).

    Article  ADS  CAS  Google Scholar 

  14. Sommer, M., Maura, H. & Urback, R. Nature 263, 752 (1976).

    Article  ADS  CAS  Google Scholar 

  15. Peterson, L. E., Jacobson, A. S., Pelling, R. M. & Schwartz, D. A. Can. J. Phys. 46, S437 (1968).

    Article  ADS  Google Scholar 

  16. Overbeck, J. & Tananbaum, H. Phys. Rev. Lett. 20, 24 (1968).

    Article  ADS  Google Scholar 

  17. Haymes, R. C. & Harnden, F. R. Jr Astrophys. J. 159, 1111 (1970).

    Article  ADS  Google Scholar 

  18. Weber, W. R. & Reinert, C. P. Astrophys. J. 162, 883 (1970).

    Article  ADS  Google Scholar 

  19. Agrawal, P. C. et al. Astrophys. Space. Sci. 18, 408 (1972).

    Article  ADS  Google Scholar 

  20. Rothschild, R. E., Boldt, E. A., Holt, S. S. & Serlemitsos, P. J. Astrophys. J. 213, 818 (1977).

    Article  ADS  CAS  Google Scholar 

  21. Frontera, F. & Fuligni, F. Astrophys. J. 196, 597 (1975).

    Article  ADS  Google Scholar 

  22. Paciesas, W. S. thesis SP78.02, Univ. California, San Diego (1978).

  23. Voges, W. et al. Astr. Astrophys. (in the press).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liang, E. Test of the inverse Compton model for Cygnus X-1. Nature 283, 642–644 (1980). https://doi.org/10.1038/283642a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/283642a0

  • Springer Nature Limited

Navigation