Skip to main content
Log in

Efficiency of protein synthesis after fertilisation of sea urchin eggs

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

ELUCIDATION of the mechanisms involved in the cytoplasmic control of protein synthesis is essential for an understanding of the initiation of embryogenesis. On fertilisation, echinoid eggs increase their rate of protein synthesis many-fold, independent of any increase in ribosomal or mRNA synthesis1–4. Within 2 h of fertilisation the number of ribosomes in polyribosomes increases about 25-fold without any change in the size distribution of poly ribosomes5,6. In addition, the polyribosome number doubles again by gastrulation. However, the total rate of protein synthesis increases 113-fold from egg to gastrulation7. The discrepancy between the number of ribosomes recruited into polyribosomes, an increase of ≈50 fold, and the total increase in the rate of protein synthesis, a 113-fold increase, could be explained if there were also an increase in the rate of movement of ribosomes along each message (elongation) and/or an increase in the rate of release of completed peptides (termination). We report here that the translational rate is increased about 2.5-fold after fertilisation in the sea urchin, Strongylocentrotus purpuratus. The average transit time (elongation plus termination time for an average-sized peptide) was measured for these eggs and several stages of embryos.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Denny, P. C. & Tyler, A. Biochem. biophys. Res. Commun. 14, 245–249 (1964).

    Article  CAS  Google Scholar 

  2. Gross, P. R., Malkin, L. I. & Moyer, W. A. Proc. natn. Acad. Sci. U.S.A. 51, 407–414 (1964).

    Article  ADS  CAS  Google Scholar 

  3. Jenkins, N. A., Taylor, M. & Raff, R. A. Proc. natn. Acad. Sci. U.S.A. 70, 3287–3291 (1973).

    Article  ADS  CAS  Google Scholar 

  4. Jenkins, N. A., Kaumeyer, J. F., Young, E. M. & Raff, R. A. Devl Biol. 63, 279–298 (1978).

    Article  CAS  Google Scholar 

  5. Humphreys, T. Devl Biol. 26, 201–208 (1971).

    Article  CAS  Google Scholar 

  6. Infante, A. A. & Nemer, M. Proc. natn. Acad. Sci. U.S.A. 58, 681–688 (1967).

    Article  ADS  CAS  Google Scholar 

  7. Regier, J. C. & Kafatos, F. C. Devl Biol. 57, 270–283 (1977).

    Article  CAS  Google Scholar 

  8. Fan, J. & Penman, S. J. molec. Biol. 50, 655–670 (1970).

    Article  CAS  Google Scholar 

  9. Palmiter, R. D. J. biol. Chem. 247, 6770–6780 (1972).

    CAS  PubMed  Google Scholar 

  10. Showman, R. M. & Foerder, C. A. Expl Cell Res. (in the press).

  11. Bensadoun, A. & Weinstein, D. Analyt. Biochem. 70, 241–250 (1976).

    Article  CAS  Google Scholar 

  12. Slabaugh, R. C. & Morris, A. J. J. biol. Chem. 245, 6182–6189 (1970).

    CAS  PubMed  Google Scholar 

  13. Georgiev, G. P. & Samarina, O. P. Adv. Cell Biol. 2, 47–110 (1971).

    Article  CAS  Google Scholar 

  14. Spirin, A. S. Curr. Topics dev. Biol. 1, 1–38 (1966).

    Article  CAS  Google Scholar 

  15. Leffak, I. M., Grainger, R. & Weintraub, H. Cell 12, 837–845 (1977).

    Article  CAS  Google Scholar 

  16. Mitchinson, J. M. & Cummins, J. E. J. Cell Sci. 1, 35–47 (1966).

    Google Scholar 

  17. Fry, B. J. & Gross, P. R. Devl Biol. 21, 125–146 (1970).

    Article  CAS  Google Scholar 

  18. Brandhorst, B. P. Devl Biol. 52, 310–317 (1976).

    Article  CAS  Google Scholar 

  19. Humphreys, T. Devl Biol. 20, 435–458 (1969).

    Article  CAS  Google Scholar 

  20. Brandis, J. W. & Raff, R. A. Devl Biol. 67, 99–113 (1978).

    Article  CAS  Google Scholar 

  21. Craig, N. J. cell Physiol. 87, 157–166 (1975).

    Article  CAS  Google Scholar 

  22. Craig, N. Cell 4, 329–335 (1975).

    Article  CAS  Google Scholar 

  23. Felicetti, L., Metafora, S., Gambino, R. & Di Matteo, G. Cell. Differentiation 1, 265–277 (1972).

    Article  CAS  Google Scholar 

  24. Nemer, M. Cell 6, 559–570 (1975).

    Article  CAS  Google Scholar 

  25. Metafora, S., Felicetti, L. & Gambino, R. Proc. natn. Acad. Sci. U.S.A. 68, 600–604 (1971).

    Article  ADS  CAS  Google Scholar 

  26. Hille, M. B. Nature 249, 556–558 (1974).

    Article  ADS  CAS  Google Scholar 

  27. Filipowicz, W., Sierra, J. M. & Ochoa, S. Proc. natn. Acad. Sci. U.S.A. 72, 3947–3951 (1975).

    Article  ADS  CAS  Google Scholar 

  28. Laskey, R. A., Mills, A. D., Gurdon, J. B. & Partington, G. A. Cell 11, 345–351 (1977).

    Article  CAS  Google Scholar 

  29. Sconzo, G. & Giudice, G. Biochem. biophys. Acta 199, 435–440 (1970).

    CAS  PubMed  Google Scholar 

  30. Hille, M. B. and Albers, A. A. J. Cell. Biol. 79, 166a (1978).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

HILLE, M., ALBERS, A. Efficiency of protein synthesis after fertilisation of sea urchin eggs. Nature 278, 469–471 (1979). https://doi.org/10.1038/278469a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/278469a0

  • Springer Nature Limited

This article is cited by

Navigation