Skip to main content
Log in

Elaborate CNS cooling structures in large dinosaurs

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

DURING sustained activity, or when exposed to high ambient temperatures, terrestrial animals often experience periods of core hyperthermia. The central nervous system (CNS) is very sensitive to elevated temperatures1–3, and consequently, both bradymetabolic and tachymetabolic4 terrestrial vertebrates have evolved physiological mechanisms which effect localised cooling of the brain, and thereby reduce any thermal impairment of CNS functioning. In modern reptiles this temperature gradient is produced by evaporative cooling from the buccal cavity and upper respiratory tract5,6, conducting heat from the brain through the floor of the cranium7. Mammals dissipate heat, by evaporation, from the nasal mucosa to the air flowing through the nasal passages. The cooled venous blood draining from this highly vascularised mucosa flows into the cavernous sinus, where counter-current heat exchange with the carotid arteries, elaborated into a rete in many forms, results in brain cooling8,9 (Fig. 1a). Dinosaurs would have experienced similar thermal problems to those of modern vertebrates, and these would have been particularly acute in the larger forms whose low surface area to volume ratio would have restricted dissipation of the enormous amounts of heat generated by the skeletal muscles during activity. It is therefore proposed that they required and possessed comparable physiological mechanisms to protect the brain during core hyperthermia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Percht, H., Christopherson, J., Hensel, H. & Larcher, W. Temperature and Life 656–658 (Springer, Berlin, 1973).

    Book  Google Scholar 

  2. Becht, F. C. Am. J. Physiol. 22, 456–476 (1908).

    Article  Google Scholar 

  3. Webb, G. J. W. & Witten, G. J. Comp. Biochem. Physiol. 45A, 829–832 (1973).

    Article  CAS  Google Scholar 

  4. Bligh, J. & Johnson, K. G. J. appl. Physiol. 35, 941–961 (1973).

    Article  CAS  Google Scholar 

  5. Crawford, E. G., Palomeque, J. & Barber, B. J. Comp. Biochem. Physiol. 56A, 161–163 (1977).

    Article  Google Scholar 

  6. Webb, G. J. W. & Johnson, C. R. Comp. Biochem. Physiol. 43A, 593–611 (1972).

    Article  Google Scholar 

  7. Crawford, E. C. Science 177, 431–433 (1972).

    Article  ADS  Google Scholar 

  8. Baker, M. A. & Hayward, J. N. J. Physiol., Lond. 198, 561–579 (1968).

    Article  CAS  Google Scholar 

  9. Hayward, J. N. & Baker, M. A. Brain Res. 16, 417–440 (1969).

    Article  CAS  Google Scholar 

  10. Romer, A. S. Vertebrate Paleontology (University of Chicago Press, 1966).

    Google Scholar 

  11. Galton, P. M. J. Paleontol. 44, 464–73 (1970).

    Google Scholar 

  12. Ostrom, J. H. Am. J. Sci. 262, 975–997 (1964).

    Article  ADS  Google Scholar 

  13. Ostrom, J. H. Am. Mus. nat. Hist. Bull. 122(2), 33–186 (1961).

    Google Scholar 

  14. Ostrom, J. H. Postilla 62, 1–29 (1962).

    Google Scholar 

  15. Young, B. A., Bligh, J. & Louw, G. J. Thermal Biol. 1, 195–198 (1976).

    Article  CAS  Google Scholar 

  16. Dodson, P. Syst. Zool. 24, 37–54 (1975).

    Article  Google Scholar 

  17. Hopson, J. A. Paleobiology 1, 21–43 (1975).

    Article  Google Scholar 

  18. Heath, J. E. Physiol. Zool. 39, 30–35 (1966).

    Article  Google Scholar 

  19. Bakker, R. T. Discovery (New Haven) 3, 11–22 (1968).

    Google Scholar 

  20. Bakker, R. T. Nature 229, 172–174 (1971).

    Article  ADS  CAS  Google Scholar 

  21. Coombs, W. P. Paleogeogr., Palaeoclimatol., Palaeocol. 17, 1–33 (1975).

    Article  ADS  Google Scholar 

  22. Taylor, C. R. Physiol. Zool. 39, 127–139 (1966).

    Article  Google Scholar 

  23. Ostrom, J. H. Evolution 20, 290–308 (1966).

    Article  Google Scholar 

  24. Johnson, C. R. Comp. Biochem. Physiol. 43A, 1025–1029 (1972).

    Article  Google Scholar 

  25. Schmidt-Nielsen, K. et al. Condor 71, 341–352 (1969).

    Article  Google Scholar 

  26. Bakker, R. T. Evolution 25, 636–658 (1971).

    Article  Google Scholar 

  27. Farlow, J. O., Thompson, C. V., Rostner, D. E. Science 192, 1123–1125 (1976).

    Article  ADS  CAS  Google Scholar 

  28. Magilton, J. H. & Swift, C. S. J. appl. Physiol. 27, 18–20 (1969).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

WHEELER, P. Elaborate CNS cooling structures in large dinosaurs. Nature 275, 441–443 (1978). https://doi.org/10.1038/275441a0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/275441a0

  • Springer Nature Limited

Navigation