Skip to main content
Log in

In vivo photoinactivation of Escherichia coli ribonucleotide reductase by near-ultraviolet light

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

NEAR-ULTRAVIOLET light (320–400 nm) is lethal to bacteria1, yeast cells2 and mammalian cells3. A large body of evidence correlates cell death and survival with the induction and repair of pyrimidine dimers in the DNA of cells irradiated by far-ultraviolet light (200–300 nm) (refs 4–7). The induction of pyrimidine dimers has also been demonstrated by 365-nm near-ultraviolet light but at 7×105-fold lower efficiency than by 254-nm far-ultraviolet light8. With the exception of certain Escherichia coli strains with multiple deficiencies in DNA repair9,10 the small number of pyrimidine dimers produced by 365-nm near-ultraviolet light does not account for a significant fraction of the biological damage either in terms of lethality11 or the inactivation of transforming DNA12. The killing of cells by near-ultraviolet light is oxygen dependent whereas that by far-ultraviolet light is oxygen independent3,13. The operational distinction between far- and near-ultraviolet light based on oxygen dependence of lethality coincides with the upper limit of ultraviolet light absorption by the DNA at about 310nm14 and may reflect the involvement of a primary target site other than DNA in the killing of cells by near-ultraviolet light. In E. coli deoxyribonucleotides are formed de novo by the reduction of ribonucleoside diphosphates15. Two of the components of the ribonucleoside diphosphate reductase (RDP-reductase) complex, the non-haem iron protein subunit of the RDP-reductase16 and the functionally linked flavoprotein thioredoxin reductase17 have strong absorption in the near-ultraviolet region. I show here that near-ultraviolet irradiation of E. coli cells selectively destroys RDP-reductase activity in vivo and present evidence relating the loss of RDP-reductase to the loss of cellular viability and to the inability of irradiated cells to support the replication of DNA phages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hollaender, A. J. Bact. 46, 531–541 (1943).

    CAS  PubMed  Google Scholar 

  2. Fong, F., Peters, J., Pauling, C. & Heath, R. L. Biochim. biophys. Acta 387, 451–460 (1975).

    Article  CAS  Google Scholar 

  3. Danpure, H. J., & Tyrrell, R. M. Photochem. Photobiol. 23, 171–177 (1976).

    Article  CAS  Google Scholar 

  4. Setlow, R. B. & Carrier, W. L. Proc. natn. Acad. Sci. U.S.A. 51, 226–231 (1964).

    Article  CAS  ADS  Google Scholar 

  5. Boyce, P. R. & Howard-Flanders, P. Proc. natn. Acad. Sci. U.S.A. 51, 293–300 (1964).

    Article  CAS  ADS  Google Scholar 

  6. Setlow, R. B. Science 153, 379–386 (1966).

    Article  CAS  ADS  Google Scholar 

  7. Setlow, R. B., Regan, J. D., German, J. & Carrier, W. L. Proc. natn. Acad. Sci. U.S.A. 64, 1035–1041 (1969).

    Article  CAS  ADS  Google Scholar 

  8. Tyrrell, R. M. Photochem. Photobiol 17, 69–73 (1973).

    Article  CAS  Google Scholar 

  9. Brown, M. S. & Webb, R. B. Mutat. Res. 15, 348–352 (1972).

    Article  CAS  Google Scholar 

  10. Tyrrell, R. M., Webb, R. B. & Brown, M. S. Photochem. Photobiol. 18, 249–254 (1973).

    Article  CAS  Google Scholar 

  11. Webb, R. B., Brown, M. S. & Tyrrell, R. M. Mutat. Res. 37, 163–172 (1976).

    Article  CAS  Google Scholar 

  12. Peak, M. J., Peak, J. G. & Webb, R. B. Mutat. Res. 20, 143–148 (1973).

    Article  CAS  Google Scholar 

  13. Webb, R. B. & Lorenz, J. R. Photochem. Photobiol. 12, 283–289 (1970).

    Article  CAS  Google Scholar 

  14. Beaven, G. H., Holiday, E. R. & Johnson, E. A. in The Nucleic Acids (eds Chargaff, E. & Davidson, J. N.) 493–553 (Academic, New York, 1955).

    Google Scholar 

  15. Reichard, P. in The Biosynthesis of Deoxyribose 10–13 (Wiley, New York, 1967).

    Google Scholar 

  16. Brown, N. C., Eliasson, R., Reichard, P. & Thelander, L. Biochem. biophys. Res. Commun. 30, 522–527 (1968).

    Article  CAS  Google Scholar 

  17. Moore, E. C., Reichard, P. & Thelander, L. J. biol. Chem. 239, 3445–34522 (1964).

    CAS  PubMed  Google Scholar 

  18. Peak, M. J. & Peak, J. G. Photochem. Photobiol. 18, 525–527 (1973).

    Article  CAS  Google Scholar 

  19. Maaloe, O. & Hanawalt, P. C. J. molec. Biol. 3, 144–145 (1961).

    Article  CAS  Google Scholar 

  20. Warner, H. R. J. Bact. 115, 18–22 (1973).

    CAS  PubMed  Google Scholar 

  21. O'Donovan, G. A. & Neuhard, J. Bact. Rev. 34, 278–343 (1970).

    CAS  PubMed  Google Scholar 

  22. Cohen, S. S. & Earner, H. D. Proc. natn. Acad. Sci. U.S.A. 40, 885–893 (1954).

    Article  CAS  ADS  Google Scholar 

  23. Breitman, T. R. & Bradford, R. M. Biochim. biophys. Acta 138, 217–220 (1967).

    Article  CAS  Google Scholar 

  24. Munch-Petersen, A. Biochim. biophys. Acta 161, 279–282 (1968).

    Article  CAS  Google Scholar 

  25. Hill, R. F. J. Bact. 71, 231–235 (1956).

    Article  CAS  Google Scholar 

  26. Day, R. S. & Bernard, M. Photochem. Photobiol. 20, 95–102 (1974).

    Article  CAS  Google Scholar 

  27. August, J. T., Cooper, S., Shapiro, L. & Zinder, N. D. Cold Spring Harb. Symp. quant. Biol. 28, 95–97 (1963).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

PETERS, J. In vivo photoinactivation of Escherichia coli ribonucleotide reductase by near-ultraviolet light. Nature 267, 546–548 (1977). https://doi.org/10.1038/267546a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/267546a0

  • Springer Nature Limited

Navigation