Skip to main content
Log in

Frequency of heavy-metal resistance in bacteria from inpatients in Japan

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

IN many bacteria, resistance to heavy metals is associated with a plasmid1–4. R plasmids in Escherichia coli can determine resistance to several metallic ions such as mercury, cobalt and nickel3, and a penicillinase plasmid mediating resistance to mercury, cadmium, arsenate, arsenite, lead and zinc has been observed in Staphylococcus aureus1,2. Mechanisms controlling bacterial resistances to mercury and cadmium are quite different although both are mediated by the same penicillinase plasmid4. Furthermore, microorganisms generally detoxify mercurial compounds metabolically by the formation of volatile mercury5–9 or mercury mercaptides10–12. It is of interest that resistance to these heavy metals is mediated by the plasmids which determine resistance to antibiotics. Most of these heavy metals are established or possible causes of environmental pollution; methyl mercury causes ‘Minamata disease’13,14 and cadmium causes ‘Itai-Itai disease’15,16 in Japan. The role of R plasmids in drug resistance has been widely studied17–21, and extrachromosomal determinants are a main cause of the increase in numbers of drug-resistant bacteria. Studies of heavy metal resistance have attempted to establish a relationship between resistance to heavy metals and to drugs in the hospital environment22,23. The factors selecting for these heavy-metal-resistant bacteria have not yet been identified. We believe that heavy-metal-resistant microorganisms do not arise by chance, but, that there must be selectional factors beyond mere drug resistance. One of these selectional factors may be environmental contamination by heavy metals. To investigate this possibility, we studied the frequency of drug and heavy-metal resistance in clinical isolates of E. coli, Klebsiella pneumoniae, Pseudomonas aeruginosa and S. aureus. We report here that the frequency of heavy-metal resistance in these strains was the same as, or higher than that of antibiotic resistance. Some R plasmids in E. coli and K. pneumoniae also carried a resistance to Hg.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Richmond, M. H. & John, M. Nature 202 1360–1361 (1964).

    Article  ADS  CAS  PubMed  Google Scholar 

  2. Novick, R. P. & Roth, C. J. Bacteriol. 95, 1335–1342 (1968).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Smith, D. H. Science 156, 1114–1116 (1967).

    Article  ADS  CAS  PubMed  Google Scholar 

  4. Kondo, I., Ishikawa, T. & Nakahara, H. J. Bacteriol. 117, 1–7 (1974).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Tonomura, K., Maeda, K., Futai, F., Nakagami, T. & Yamada, M. Nature 217, 644–646 (1968).

    Article  ADS  CAS  PubMed  Google Scholar 

  6. Ben-Bassat, D., Shelef, G., Gruner, N. & Shuval, H. Nature 240, 32–44 (1972).

    Article  Google Scholar 

  7. Summers, A. O. & Silver, S. J. Bacteriol. 112, 1228–1236 (1972).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Nelson, J. D., Jr, Blair, W., Brinckman, F. E., Colwell, R. R. & Iverson, W. P. Appl. Microbiol. 26, 321–326 (1973).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Schottel, J., Mandal, A., Clark, D., Silver, S. & Hedges, R. W. Nature 251, 335–337 (1974).

    Article  ADS  CAS  PubMed  Google Scholar 

  10. Wood, J. M., Kennedy, F. S. & Rosen, C. G. Nature 220, 173–174 (1968).

    Article  ADS  CAS  PubMed  Google Scholar 

  11. Wood, J. M. Science 183, 1049–1052 (1974).

    Article  ADS  CAS  PubMed  Google Scholar 

  12. Hamdy, M. K. & Noyes, O. R. Appl. Microbiol. 30, 424–432 (1975).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Hirayama, K. & Takahashi, H. Kumamoto Med. J. 23, 56–64 (1970).

    CAS  PubMed  Google Scholar 

  14. Takizawa, Y., Kosaka, T., & Sugai, R. Acta Med. Biol. (Niigata) 19, 193–206 (1972).

    CAS  Google Scholar 

  15. Tsuchiya, K. Keio. J. Med. 18, 181–194 (1969).

    Article  CAS  PubMed  Google Scholar 

  16. Emmerson, B. T. Ann. Intern. Med. 73, 854–855 (1970).

    Article  CAS  PubMed  Google Scholar 

  17. Watanabe, T. Bacteriol. Rev. 27, 87–115 (1963).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Curtiss, R., III Ann. Rev. Microbiol. 23, 69–136 (1969).

    Article  CAS  Google Scholar 

  19. Datta, N., & Hedges, R. W. Nature 234, 222–223 (1971).

    Article  ADS  CAS  PubMed  Google Scholar 

  20. Mitsuhashi, S. in Transferable Drug Resistance Factor R (ed. Mitsuhashi, S.) 7–16 (University of Tokyo Press, Tokyo, 1971).

    Google Scholar 

  21. Lacey, R. W. & Richmond, M. H. Ann. N. Y. Acad. Sci. 236, 395–412 (1974).

    Article  ADS  CAS  PubMed  Google Scholar 

  22. Moore, B. Lancet ii, 453–458 (1960).

    Article  Google Scholar 

  23. Dyke, K. G., Parker, M. T., & Richmond, M. H. J. med. Microbiol. 3, 125–139 (1970).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

(to whom reprint requests should be sent).

Rights and permissions

Reprints and permissions

About this article

Cite this article

NAKAHARA, H., ISHIKAWA, T., SARAI, Y. et al. Frequency of heavy-metal resistance in bacteria from inpatients in Japan. Nature 266, 165–167 (1977). https://doi.org/10.1038/266165a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/266165a0

  • Springer Nature Limited

This article is cited by

Navigation