Skip to main content

Advertisement

Log in

Increased optical transparency associated with excitation–contraction coupling in voltage-clamped cut skeletal muscle fibres

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

CONTRACTION of a skeletal muscle fibre is triggered by depolarisation of its transverse (T-) tubules1, which occurs physiologically with the spread of an action potential into the T-system2. The T-tubule depolarisation gives rise to calcium release3,4 from the adjacent but separate5,6 sarcoplasmic reticulum (SR). The released calcium binds to troponin, removing the inhibition of actin–myosin interaction and enabling contractile activity7. Little is known about the nature of the T-tubule–SR interaction. It has been suggested that movement of charged molecules or dipoles in the T-tubule membrane is the initial voltage-sensitive step in the chain of events leading from T-tubule depolarisation to SR calcium release8, and membrane charge displacement currents which may reflect such movements have been observed and characterised8–10. We report here a study of subsequent changes which may be related to calcium release.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Huxley, A. F. & Taylor, R. E. J. Physiol., Lond. 144, 426–441 (1958).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Costatin, L. L. J. gen. Physiol. 55, 703–715 (1970).

    Article  Google Scholar 

  3. Jöbsis, F. F. & O'Connor, M. J. Biochem. biophys. Res. Commun. 25, 246–252 (1966).

    Article  PubMed  Google Scholar 

  4. Taylor, S. R., Rüdell, R. & Blinks, J. R. Fedn Proc. 34 1379–1381 (1975).

    CAS  Google Scholar 

  5. Franzini-Armstrong, C. J. Cell Biol. 49, 196–203 (1971).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Franzini-Armstrong, C. Fedn Proc. 34, 1382–1389 (1975).

    CAS  Google Scholar 

  7. Ebashi, S., Endo, M. & Ohtsuki, I. Q. Rev. Biophys. 2, 351–384 (1969).

    Article  CAS  PubMed  Google Scholar 

  8. Schneider, M. F. & Chandler, W. K. Nature 242, 244–246 (1973).

    Article  ADS  CAS  PubMed  Google Scholar 

  9. Chandler, W. K., Rakowski, R. F. & Schneider, M. F. J. Physiol., Lond. 254, 245–283 (1976).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Adrian, R. H. & and Almers, W. J. Physiol., Lond. 254, 339–360 (1976).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Hill, D. K. J. Physiol., Lond. 108, 292–302 (1949).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Barry, W. H. & Carnay, L. D. Am. J. Physiol. 217, 1425–1430 (1969).

    CAS  PubMed  Google Scholar 

  13. Sandow, A. M.V.C. Quart. 2, 82–89 (1966).

    Google Scholar 

  14. Mulieri, L. A. J. Physiol., Lond. 223, 333–354 (1972).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hodgkin, A. L., Huxley, A. F. & Katz, B. J. Physiol., Lond. 116, 424–448 (1952).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kovács, L. & Schneider, M. F. Biophys. J. 17, 5a (1977).

    Google Scholar 

  17. Costantin, L. L. J. gen. Physiol. 63, 657–674 (1974).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Chandler, W. K. & Schneider, M. F. J. gen. Physiol. 67, 165–184 (1976).

    Article  CAS  PubMed  Google Scholar 

  19. Adrian, R. H., Chandler, W. K. & and Hodgkin, A. L. J. Physiol., Lond. 204, 207–230 (1969).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Abbott, B. C. & Ritchie, J. M. J. Physiol., Lond. 113, 330–335 (1951).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hill, D. K. J. Physiol., Lond. 199, 637–684 (1968).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Bezanilla, F. & Horowicz, P. J. Physiol., Lond. 246, 709–735 (1975).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Oetliker, H., Baylor, S. M. & Chandler, W. K. Nature 257, 693–696 (1975).

    Article  ADS  CAS  PubMed  Google Scholar 

  24. Baylor, S. M. & and Oetliker, H. Nature 253, 97–101 (1975).

    Article  ADS  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

KOVÁCS, L., SCHNEIDER, M. Increased optical transparency associated with excitation–contraction coupling in voltage-clamped cut skeletal muscle fibres. Nature 265, 556–560 (1977). https://doi.org/10.1038/265556a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/265556a0

  • Springer Nature Limited

This article is cited by

Navigation