Skip to main content
Log in

Dinosaurs, endothermy and blood pressure

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

THE recent resurgence of speculation about dinosaur physiology and behaviour has resulted in two notable and debatable interpretations. Bakker1 summarises evidence of several investigators and concludes that dinosaurs were endothermic. Coombs2, among others, suggests that the sauropod dinosaurs were mainly terrestrial, only occasionally entering shallow water. These hypotheses might well be viewed in the light of one line of evidence concerning the relationship between height of animals and hydrostatic pressures in the vascular system. Size alone can provide important insights into dinosaur cardiovascular performance which necessarily relates to the questions of endothermy and habitat. This report shows firstly, that high arterial blood pressures in large dinosaurs are consistent with the proposal that they were endothermic. Secondly, I suggest that if the long-necked sauropods were aquatic, they thereby avoided tremendous hydrostatic stresses on the cardiovascular system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bakker, R. T., Scient. Am., 232, 58–78 (1975).

    Article  Google Scholar 

  2. Coombs, W. P., Jr, Paleogeogr., Paleodimatol., Paleoecol., 17, 1–33 (1975).

    Article  ADS  Google Scholar 

  3. Rodbard, S., Brown, F., and Katz, L. N., Am. Heart J., 38, 863–871 (1949).

    Article  CAS  Google Scholar 

  4. Johansen, K., Resp. Physiol., 14, 193–210 (1972).

    Article  CAS  Google Scholar 

  5. Geddes, L. A., The Direct and Indirect Measurement of Blood Pressure. (Year-book Medical Publishers, Chicago, 1970).

    Google Scholar 

  6. Bakker, R. T., Evolution, 25, 636–658 (1971).

    Article  Google Scholar 

  7. Bennett, A. F., and Dalzell, B., Evolution, 27, 170–174 (1973).

    Article  Google Scholar 

  8. Feduccia, A., Evolution, 27, 166–169 (1973).

    Article  Google Scholar 

  9. Prosser, C. L., and Brown, F. A., Jr, Comparative Animal Physiology (Saunders, London, 1961).

    Google Scholar 

  10. Bakker, R. T., Nature, 238, 81–85 (1972).

    Article  ADS  Google Scholar 

  11. Ricqlès, A. de., C.r. hebd. Seanc. Acad. Sci Paris, 268, 782–785 (1969).

    Google Scholar 

  12. Hohnke, L. A., Nature, 244, 309–310 (1973).

    Article  ADS  CAS  Google Scholar 

  13. Lasiewski, R. C., and Calder, W. A., Jr, Resp. Physiol., 11, 152–166 (1971).

    Article  CAS  Google Scholar 

  14. Van Citters, R. L., Kemper, W. S., and Franklin, D. L., Science, 152, 384–386 (1966).

    Article  ADS  CAS  Google Scholar 

  15. Goss, R. J., in Cardiac Hypertrophy (edit. by Alpert, N. R.), 1–10 (Academic, New York, 1971).

    Google Scholar 

  16. Clark, A. J., Comparative Physiology of the Heart (Cambridge University Press, London, 1927).

    Google Scholar 

  17. Sandler, H., and Dodge, H. T., Circulation Res., 13, 91–104 (1963).

    Article  CAS  Google Scholar 

  18. Kurtén, B., The Age of the Dinosaurs (World University Library, London, 1968).

    Google Scholar 

  19. Romer, A. S., Vertebrate Paleontology (University of Chicago Press, 1945).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

SEYMOUR, R. Dinosaurs, endothermy and blood pressure. Nature 262, 207–208 (1976). https://doi.org/10.1038/262207a0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/262207a0

  • Springer Nature Limited

This article is cited by

Navigation