Skip to main content

Advertisement

Log in

Effect of muscle disuse on acetylcholine receptors

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

MOTOR nerves have an important role in the trophic regulation of many properties of skeletal muscle, including acetylcholine receptor (AChR) distribution1. In innervated muscle, the density of AChR at neuromuscular junctions is at least 2,500 times greater than at extrajunctional regions2. When the motor nerves are sectioned, extrajunctional AChR density increases markedly2–5. The trophic mechanisms by which the nerves normally prevent this denervation change are not yet well understood. It has been suggested that muscle use contributes to the control of AChR. This hypothesis has been tested in two ways. First, electrical stimulation was applied directly to denervated muscle, and the extrajunctional ACh sensitivity was determined. The results indicated that stimulation-induced use largely prevented the denervation effect6,7. Second, attempts have been made to assess the effect of disuse of muscle on extrajunctional ACh sensitivity. Various methods have been used to eliminate muscle contraction but all have had shortcomings. In some cases, the ‘disuse’ has been incomplete8–10; in others, the methods used to block nerve conduction7,11 have produced blockade of axonal transport12,13, which may itself result in denervation effects14,15. Using a new model of disuse free of these problems, we have now compared the effects of disuse and denervation with respect to extrajunctional AChR density. We report here evidence that disuse produces a significant increase in extrajunctional AChR, but does not completely reproduce the effect of surgical denervation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Harris, A. J., A. Rev. Physiol., 36, 251–305 (1974).

    Article  CAS  Google Scholar 

  2. Hartzell, H. C., and Fambrough, D. M., J. gen. Physiol., 60, 248–262 (1972).

    Article  CAS  Google Scholar 

  3. Axelsson, J., and Thesleff, S., J. Physiol., Lond., 147, 178–193 (1959).

    Article  CAS  Google Scholar 

  4. Lee, C. Y., Tseng, L. F., and Chiu, T. H., Nature, 215, 1177–1178 (1967).

    Article  ADS  CAS  Google Scholar 

  5. Libelius, R., J. Neur. Trans., 35, 137–149 (1974).

    Article  CAS  Google Scholar 

  6. Drachman, D. B., and Witzke, F., Science, 176, 514–516 (1972).

    Article  ADS  CAS  Google Scholar 

  7. Lømo, T., and Rosenthal, J., J. Physiol., Lond., 221, 493–513 (1972).

    Article  Google Scholar 

  8. Johns, T. R., and Thesleff, S., Acta Physiol. scand., 51, 136–141, (1961).

    Article  CAS  Google Scholar 

  9. Fischbach, G. D., and Robbins, N., J. Neurophys., 34, 562–569 (1971).

    Article  CAS  Google Scholar 

  10. Vyskocil, F., Moravec, J., and Jansky, L., Brain Res., 34, 381–384 (1971).

    Article  CAS  Google Scholar 

  11. Roberts, E. D., and Oester, Y. T., Archs Neurol., 22, 57–63 (1970).

    Article  Google Scholar 

  12. Bisby, M. A., Expl Neurol., 47, 481–489 (1975).

    Article  CAS  Google Scholar 

  13. Fink, B. R., Kennedy, R. D., Hendrickson, A. E., and Middaugh, M. E., Anesthesiology, 36, 422–432 (1972).

    Article  CAS  Google Scholar 

  14. Hoffman, W. W., and Thesleff, S., Eur. J. Pharm., 20, 256–260 (1972).

    Article  Google Scholar 

  15. Albuquerque, E. X., Warnick, J. E., Tasse, J. R., and Sansone, F. M., Expl Neurol., 37, 607–634 (1972).

    Article  CAS  Google Scholar 

  16. Hille, B., J. gen. Physiol., 51, 199–219 (1968).

    Article  CAS  Google Scholar 

  17. Fambrough, D. M., J. gen. Physiol., 64, 468–472 (1974).

    Article  CAS  Google Scholar 

  18. Berg, D. K., Kelley, R. B., Sargent, P. B., Williamson, P., and Hall, Z. W., Proc. natn. Acad. Sci. U.S.A., 69, 147–151 (1972).

    Article  ADS  CAS  Google Scholar 

  19. Katz, B., and Thesleff, S., J. Physiol., Lond., 137, 267–278 (1957).

    Article  CAS  Google Scholar 

  20. Ochs, S., J. Physiol., Lond., 227, 627–645 (1972).

    Article  CAS  Google Scholar 

  21. Griffin, J. W., Price, D. L., Drachman, D. B., and Engel, W. K., Ann. N. Y. Acad. Sci. (in the press).

  22. Thesleff, S., J. Physiol., Lond., 151, 598–607 (1960).

    Article  CAS  Google Scholar 

  23. Drachman, D. B., Ann. N. Y. Acad. Sci., 278, 160–176 (1974).

    Article  ADS  Google Scholar 

  24. Jones, R., and Vrbova, G., J. Physiol., Lond., 236, 517–538 (1974).

    Article  CAS  Google Scholar 

  25. Karnovsky, M. J., and Roots, L., J. Histochem. Cytochem., 12, 219–221 (1964).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

PESTRONK, A., DRACHMAN, D. & GRIFFIN, J. Effect of muscle disuse on acetylcholine receptors. Nature 260, 352–353 (1976). https://doi.org/10.1038/260352a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/260352a0

  • Springer Nature Limited

This article is cited by

Navigation