Skip to main content
Log in

Roles of carbonyl oxygens at the bilayer interface in phospholipid–sterol interaction

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

FROM many recent studies on the phospholipid–sterol interaction, it has become increasingly clear that the 3 α-and 3 β-hydroxy isomers of a range of sterols have quite different effects on the molecular mobility and functional property of lipid bilayer membranes1,2. For example, the addition of cholesterol or Δ5-cholesten-3 β-ol to liposomes decreases their permeability, whereas epicholesterol, a 3 α-isomer of cholesterol, exerts no apparent effect. It has been proposed that the 3 β-hydroxyl group engages in hydrogen bonding with the carbonyl oxygen of the fatty acyl groups in phospholipids in the bilayer3. Evidence supporting such hydrogen bond formation is strong4. The problem is, then, why does the 3 β-OH group of cholesterol, but not the 3 α-OH group of epicholesterol form such bonds?

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Silbert, D. F., A. Rev. Biochem., 44, 315–339 (1975).

    Article  CAS  Google Scholar 

  2. Lawrence, D. K., and Gill, E. W., Molec. Pharmac., 11, 280–286 (1975).

    CAS  Google Scholar 

  3. Brockerhoff, H., Lipids, 9, 645–650 (1974).

    Article  CAS  Google Scholar 

  4. Yeagle, P. L., Hutton, W. C., Huang, C., and Martin, R. B., Proc. natn. Acad. Sci. U.S. A., 72, 3477–3481 (1975).

    Article  ADS  CAS  Google Scholar 

  5. Pauling, P., in Structural Chemistry and Molecular Biology, (edit. by Rich, A., and Davidson, N.) 553–565 (W. H. Freeman, San Francisco, 1968).

    Google Scholar 

  6. Dunitz, J. D., and Strickler, P., ibid., 593–602.

  7. Mathieson, A. McL., Tetrahedron Lett., 46, 4137–4138 (1965).

    Article  Google Scholar 

  8. Levine, Y. K., Birdsall, N. J. M., Lee, A. G., and Metcalfe, J. C., Biochemistry, 11, 1416–1421 (1972).

    Article  CAS  Google Scholar 

  9. Breitmaier, E., Spohn, K.-H., Berger, S., Angew Chem. int. Edit., 14, 144–159 (1975).

    Article  Google Scholar 

  10. Tardieu, A., Luzzati, V., and Reman, F. C., J. molec. Biol., 15, 711–733 (1973).

    Article  Google Scholar 

  11. Kroon, J., and Kanters, J. A., Nature, 248, 667–668 (1974).

    Article  ADS  CAS  Google Scholar 

  12. Hasengawa, M., and Noda, H., Nature, 254, 212 (1975).

    Article  ADS  Google Scholar 

  13. Levine, Y. K., Progr. Biophys. molec. Biol., 24, 1–74 (1972).

    Article  CAS  Google Scholar 

  14. Adam, N. K., Danielli, J. F., Haslewood, G. A. D., and Marrian, G. F., Biochem. J., 26, 1233–1239 (1932).

    Article  CAS  Google Scholar 

  15. Hamilton, J. A., Talkowski, C., Childers, R. F., Williams, E., Allerhand, A., and Cordes, E. H., J. biol. Chem., 249, 4872–4878 (1974).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

HUANG, CH. Roles of carbonyl oxygens at the bilayer interface in phospholipid–sterol interaction. Nature 259, 242–244 (1976). https://doi.org/10.1038/259242a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/259242a0

  • Springer Nature Limited

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Navigation