Skip to main content
Log in

Human endonuclease activity for DNA apurinic sites

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

APURINIC sites in cellular DNA may occur secondary to the slow hydrolysis of purines in physiological conditions1 or the rapid hydrolysis of alkylated purines2. Endonucleases which incise double-stranded DNA at apurinic sites have been purified from E. coli3, calf thymus4 and rat liver5. It has been proposed that such endonucleases hydrolyse the apurinic site as the first step of a repair process similar to excision-repair of ultraviolet photoproducts6. Lindahl and Nyberg calculated that spontaneous depurination, if unrepaired in postmitotic cells such as human neurones, would result in the loss of 3% of the total purines during a lifetime1. Such a loss could be sufficient to produce abnormal proteins which appear in ageing cells7. The more rapid depurination of alkylated bases could be related to the mutagenic and carcinogenic properties of alkylating agents8. Therefore, to relate the repair of apurinic sites to the pathogenesis of human disease, we have characterised the properties of apurinic site endonuclease activity in crude extracts of HeLa cells and then measured such activity in WI-38 cells and human skin fibroblasts. We then compared enzyme activity in skin fibroblasts from individuals with two diseases in which repair of apurinic sites might be defective—progeria, characterised by premature ageing9 and associated with abnormal thermolability of cellular enzymes10, and Fanconi's anaemia, associated with an increased incidence of malignancy and in vitro susceptibility to chromosome breakage by alkylating agents11.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lindahl, T., and Nyberg, B., Biochemistry, 11, 3610–3618 (1972).

    Article  CAS  PubMed  Google Scholar 

  2. Brookes, P., and Lawley, P. D., Biochem. J., 89, 138–144 (1963).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Verly, W. G., and Paquette, Y., Can. J. Biochem., 50, 217–224 (1972).

    Article  CAS  PubMed  Google Scholar 

  4. Ljungquist, S., and Lindahl, T., J. biol. Chem., 249, 1530–1535 (1974).

    CAS  PubMed  Google Scholar 

  5. Verly, W. G., and Paquette, Y., Can. J. Biochem., 51, 1003–1009 (1973).

    Article  CAS  PubMed  Google Scholar 

  6. Verly, W. G., Gossard, F., and Crine, P., Proc. natn. Acad. Sci. U.S.A., 71, 2273–2275 (1974).

    Article  ADS  CAS  Google Scholar 

  7. Orgel, L. E., Nature, 243, 441–445 (1973).

    Article  ADS  CAS  PubMed  Google Scholar 

  8. Legator, M. S., and Flamm, W. G., A. Rev. Biochem., 42, 683–708 (1973).

    Article  CAS  Google Scholar 

  9. DeBusk, F. L., J. Pediat., 80, 697–724 (1972).

    Article  CAS  PubMed  Google Scholar 

  10. Goldstein, S., and Moerman, E., New Engl. J. Med., 292, 1305–1309 (1975).

    Article  CAS  PubMed  Google Scholar 

  11. Sasaki, M. S., and Tonomura, A., Cancer Res., 33, 1829–1835 (1972).

    Google Scholar 

  12. Lindahl, T., and Andersson, A., Biochemistry, 11, 3618–3623 (1972).

    Article  CAS  PubMed  Google Scholar 

  13. Duker, N. J., and Teebor, G. W., Nature, 255, 82–84 (1975).

    Article  ADS  CAS  PubMed  Google Scholar 

  14. Levine, E. M., Meth. Cell Biol., 8, 229–248 (1974).

    Article  CAS  Google Scholar 

  15. Brent, T. P., Nature new Biol., 239, 172–173 (1972).

    Article  ADS  CAS  PubMed  Google Scholar 

  16. Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randall, R. J., J. biol. Chem., 193, 265–275 (1951).

    CAS  PubMed  Google Scholar 

  17. Ljungquist, S., Andersson, A., and Lindahl, T., J. biol. Chem., 249, 1536–1540 (1974).

    CAS  PubMed  Google Scholar 

  18. Bacchetti, S., and Benne, R., Biochim. biophys. Acta, 390, 285–297 (1975).

    Article  CAS  PubMed  Google Scholar 

  19. Verly, W. G., Paquette, Y., and Thibodeau, L., Nature new Biol., 244, 67–69 (1973).

    Article  CAS  PubMed  Google Scholar 

  20. Epstein, J., Williams, J. R., and Little, J. B., Biochem. biophys. Res. Commun., 59, 850–857 (1974).

    Article  CAS  PubMed  Google Scholar 

  21. Poon, P. K., O'Brien, R. L., and Parker, J. W., Nature, 250, 223–225 (1974).

    Article  ADS  CAS  PubMed  Google Scholar 

  22. Regan, J. D., and Setlow, R. B., Biochem. biophys., Res. Commun., 59, 858–864 (1974).

    Article  CAS  Google Scholar 

  23. Braun, A., and Grossman, L., Proc. natn. Acad. Sci. U.S.A., 71, 1838–1842 (1974).

    Article  ADS  CAS  Google Scholar 

  24. Carrier, W. L., and Setlow, R. E., Analyt. Biochem., 43, 427–432 (1971).

    Article  CAS  PubMed  Google Scholar 

  25. Vinograd, J., Lebowitz, J., Radloff, R., Watson, R., and Laipis, P., Proc. natn. Acad. Sci. U.S.A., 53, 1104–1111 (1965).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

TEEBOR, G., DUKER, N. Human endonuclease activity for DNA apurinic sites. Nature 258, 544–547 (1975). https://doi.org/10.1038/258544a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/258544a0

  • Springer Nature Limited

This article is cited by

Navigation