Skip to main content
Log in

Inactive complex formation between E. coli RNA polymerase and inhibitor protein purified from T7 phage infected cells

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

THE “host shut-off” function of T7 phage has been thought to result from an inhibition of the host Escherichia coli RNA polymerase, which transcribes host RNA and T7 early mRNA, by an early T7 protein presumably the product of gene 0.7, or the “host shut-off” gene1–4. When T7 infection proceeds, early mRNA synthesis is shut off and the T7-specific RNA polymerase5, the product of an early gene of T7 (gene 1), transcribes late mRNA. Thus, “host shut-off” is another control factor involved in the early–late switch of T7 gene expression in addition to the switch of two RNA polymerases from the host to the phage-coded enzyme transcribing early mRNA and late mRNA, respectively, at different times of infection3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Brunovskis, I., and Summers, W. C., Virology, 45, 224–231 (1971).

    Article  CAS  PubMed  Google Scholar 

  2. Brunovskis, I., and Summers, W. C., Virology, 50, 322–327 (1972).

    Article  CAS  PubMed  Google Scholar 

  3. Studier, F. W., Science, 176, 367–376 (1972).

    Article  ADS  CAS  PubMed  Google Scholar 

  4. Rothman-Denes, L. B., Mathukrishnan, S., Haselkorn, R., and Studier, F. W., in Virus Research (edit. by Fox, C. F., and Robinson, W. S.), 227–239 (Academic, New York, 1973).

    Google Scholar 

  5. Chamberlin, M., McGrath, J., and Waskell, L., Nature, 228, 227–231 (1970).

    Article  ADS  CAS  PubMed  Google Scholar 

  6. Hesselbach, B. A., Yamada, Y., and Nakada, D., Nature, 252, 71–74 (1974).

    Article  ADS  CAS  PubMed  Google Scholar 

  7. Burgess, R. R., J. biol. Chem., 244, 6160–6167 (1969).

    Google Scholar 

  8. Hinkle, D. C., and Chamberlin, M. J., J. molec. Biol., 70, 157–185 (1972).

    Article  CAS  PubMed  Google Scholar 

  9. Ponta, H., Rahmsdorf, H. J., Pai, S. H., Herrlich, P., and Schweiger, M., Molec. gen. Genet., 134, 29–38 (1974).

    Article  CAS  PubMed  Google Scholar 

  10. Studier, F. W., J. molec. Biol., 79, 227–236 (1973).

    Article  CAS  PubMed  Google Scholar 

  11. Simon, M. N., and Studier, F. W., J. molec. Biol., 79, 249–265 (1973).

    Article  CAS  PubMed  Google Scholar 

  12. Ratner, D., J. molec. Biol., 88, 373–383 (1974).

    Article  CAS  PubMed  Google Scholar 

  13. Studier, F. W., J. molec. Biol., 94, 283–295 (1975).

    Article  CAS  PubMed  Google Scholar 

  14. Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randall, R. J., J. biol. Chem., 193, 265–275 (1951).

    PubMed  CAS  Google Scholar 

  15. Schweiger, M., and Gold, L. M., Proc. natn. Acad. Sci. U.S.A., 63, 1351–1358 (1969).

    Article  ADS  CAS  Google Scholar 

  16. Laemmli, U. K., Nature, 227, 680–685 (1970).

    Article  ADS  CAS  PubMed  Google Scholar 

  17. Berg, D., Berrett, K., and Chamberlin, M., Meth. Enzymol., 21, 506–519 (1971).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

HESSELBACH, B., NAKADA, D. Inactive complex formation between E. coli RNA polymerase and inhibitor protein purified from T7 phage infected cells. Nature 258, 354–357 (1975). https://doi.org/10.1038/258354a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/258354a0

  • Springer Nature Limited

This article is cited by

Navigation