Skip to main content
Log in

Quaternary and tertiary structure of haemerythrin

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

THE oligomeric protein haemerythrin is an oxygen-transport pigment found in erythrocytes of the coelomic fluid of certain invertebrates. It usually occurs as an octamer of molecular weight 108,000, in which each sub-unit contains two Fe atoms and reversibly binds one O2 molecule1. There is convincing evidence that myohaemerythrin, a monomeric protein found in the retractor muscles of the sipunculan worm Themiste pyroides, and the protomers of haemerythrin have quite similar tertiary structures2,3. Consequently, the low resolution structure obtained for myohaemerythrin4 has been used to solve the structure of octameric haemerythrin by molecular search techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Klotz, I. M., in Biological Macromolecules, 5, Subunits in Biological Systems (edit. by Timasheff, S. N., and Fasman, G. D.), 55–103 (Dekker, New York, 1971).

    Google Scholar 

  2. Klippenstein, G. L., VanRiper, D. A., and Oosterom, E. A., J. biol. Chem., 247, 5959–5963 (1972).

    CAS  PubMed  Google Scholar 

  3. Hendrickson, W. A., and Klippenstein, G. L., J. molec. Biol., 87, 147–149 (1974).

    Article  CAS  Google Scholar 

  4. Hendrickson, W. A., Klippenstein, G. L., and Ward, K. B., Proc. natn. Acad. Sci. U.S.A., 72, 2160–2164 (1975).

    Article  ADS  CAS  Google Scholar 

  5. Stephen, A. C., and Edmonds, S. J., The Phyla Sipuncula and Echiura (British Museum (Natural History), London, 1972).

    Google Scholar 

  6. Klippenstein, G. L., Biochemistry, 11, 372–380 (1972).

    Article  CAS  Google Scholar 

  7. Keresztes-Nagy, S., and Klotz, I. M., Biochemistry, 2, 923–927 (1963).

    Article  CAS  Google Scholar 

  8. Matthews, B. W., J. molec. Biol., 33, 491–497 (1968).

    Article  CAS  Google Scholar 

  9. North, A. C. T., and Stubbs, G. J., J. molec. Biol., 88, 125–131 (1974).

    Article  CAS  Google Scholar 

  10. Loehr, J. S., Meyerhoff, K. N., Sieker, L. C., and Jensen, L. H., J. molec. Biol., 91, 521–522 (1975).

    Article  CAS  Google Scholar 

  11. Crowther, R. A., in The Molecular Replacement Method (edit. by Rossmann, M. G.), 174–177 (Gordon and Breach, New York, 1972).

    Google Scholar 

  12. Crowther, R. A., and Blow, D. M., Acta crystallogr., 23, 544–548 (1967).

    Article  CAS  Google Scholar 

  13. Matthews, B. W., and Bernhard, S. A., A. Rev. Biophys. Bioengng, 2, 257–317 (1973).

    Article  CAS  Google Scholar 

  14. Hendrickson, W. A., and Ward, K. B., Biochem. biophys. Res. Commun. (in the press).

  15. Rill, R. L., and Klotz, I. M., Archs Biochem. Biophys., 147, 226–241 (1971).

    Article  CAS  Google Scholar 

  16. Fan, C. C., and York, J. L., Biochem. biophys. Res. Commun., 47, 472–476 (1972).

    Article  CAS  Google Scholar 

  17. Klippenstein, G. L., Biochem. biophys. Res. Commun., 49, 1474–1479 (1972).

    Article  CAS  Google Scholar 

  18. Fan, C. C., and York, J. L., Biochem. biophys. Res. Commun., 36, 365–372 (1969).

    Article  CAS  Google Scholar 

  19. Morrissey, J. A., thesis, Univ. New Hampshire (1971).

  20. Ferrell, R. E., and Kitto, G. B., Biochemistry, 10, 2923–2929 (1971).

    Article  CAS  Google Scholar 

  21. Stenkamp, R. E., Sieker, L. C., Jensen, L. H., and Loehr, J. S., J. molec. Biol. (in the press).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

WARD, K., HENDRICKSON, W. & KLIPPENSTEIN, G. Quaternary and tertiary structure of haemerythrin. Nature 257, 818–821 (1975). https://doi.org/10.1038/257818a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/257818a0

  • Springer Nature Limited

This article is cited by

Navigation