Skip to main content
Log in

Aminoacylation of transfer RNA microinjected into Xenopus laevis oocytes

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

THE microinjection technique perfected by Gurdon and his collaborators1,2 represents an excellent method for the study of the in vivo effects of drastically changing the molecular contents of the injected cells. We have demonstrated3 that radioactive yeast transfer RNA injected into oocytes of Xenopus laevis is not appreciably degraded after 20 h of incubation inside these cells. It seems therefore, possible to modify the quantity and characteristics of the tRNAs present in frog oocytes and to test the effects that such changes may have on protein synthesis and other cellular processes. An important control in such a study is to determine whether the tRNAs microinjected into frog oocytes are functional in the sense that they can be aminoacylated by the recipient cell. This report presents evidence demonstrating that the amphibian oocyte is capable of aminoacylating yeast tRNAs injected into these cells at concentrations which are greatly in excess of their endogenous tRNA content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gurdon, J. B., J. Embryol. exp. Morph., 20, 401–414 (1968).

    CAS  PubMed  Google Scholar 

  2. Gurdon, J. B., Lane, C. D., Woodland, H. R., and Marbaix, G., Nature, 233, 177–182 (1971).

    Article  CAS  ADS  Google Scholar 

  3. Allende, C. C., Allende, J. E., and Firtel, R., Cell, 2, 189–196 (1974).

    Article  CAS  Google Scholar 

  4. Tarragó, A., Allende, J. E., Redfield, B., and Weissbach, H., Archs Biochem. Biophys., 159, 353–361 (1973).

    Article  Google Scholar 

  5. Peacock, A. C., and Dingman, C. W., Biochemistry, 7, 668–674 (1968).

    Article  CAS  Google Scholar 

  6. Jerez, C., Sandoval, A., Allende, J. E., Henes, C., and Ofengard, J., Biochemistry, 8, 3006–3014 (1969).

    Article  CAS  Google Scholar 

  7. Legocki, A., and Marcus, A., J. biol. Chem., 245, 2814–2818 (1970).

    CAS  PubMed  Google Scholar 

  8. Brown, D. D., and Littna, E., J. molec. Biol., 20, 95–112 (1966).

    Article  CAS  Google Scholar 

  9. Airhart, J., Vidrich, A., and Khairallah, E. A., Biochem. J., 140, 539–548 (1974).

    Article  CAS  Google Scholar 

  10. Van Venrooij, W. J., Moonen, H., and Van Loon-Klaasen, L., Eur. J. Biochem., 297–304 (1974).

  11. Baldwin, A. N., and Berg, P., J. biol. Chem., 241, 839–845 (1966).

    CAS  PubMed  Google Scholar 

  12. Brungraber, E. E., Biochem. biophys. Res. Commun., 8, 1–3 (1962).

    Article  Google Scholar 

  13. Tarrago, A., Monasterio, O., and Allende, J. E., Biochem. biophys. Res. Commun., 41, 765–773 (1970).

    Article  CAS  Google Scholar 

  14. Muench, K., and Berg., P., in Procedures in Nucleic Acid Research (edit. by Cantoni, G. L., and Davies, D. R.), 375–383 (Harper and Row, New York, 1966).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

GATICA, M., TARRAGÓ, A., ALLENDE, C. et al. Aminoacylation of transfer RNA microinjected into Xenopus laevis oocytes. Nature 256, 675–678 (1975). https://doi.org/10.1038/256675a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/256675a0

  • Springer Nature Limited

This article is cited by

Navigation