Skip to main content
Log in

Effects of free fatty acid and enzyme release in experimental glucose on myocardial infarction

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

A Corrigendum to this article was published on 03 April 1975

Abstract

IN physiological concentrations, circulating long chain free fatty acids (FFA) can inhibit the myocardial oxidation of glucose and are the preferred fuel of the heart in the fasted state1,2. In sufficiently high concentrations, fatty acids as the only fuel can have toxic effects on the normal perfused rat heart3. The mechanisms involved in fatty acid toxicity may include the intracellular accumulation of products of fatty acid metabolism such as acyl CoA (ref. 4), which inhibits the transfer of ATP from sites of synthesis in the mitochondria to sites of utilisation in the cytoplasm. Thus, enhanced rates of FFA metabolism could be expected to aggravate myocardial infarction, in which there is a loss of ATP in the poorly perfused tissue predominantly supplied by the occluded artery5. As an intracellular ATP deficiency is postulated to be a factor promoting release of enzymes6, increased provision of FFA to the heart should accelerate enzyme release from infarcting heart tissue. Conversely, if the rate of accumulation of FFA breakdown products were decreased by the additional provision of glucose or glucose plus insulin to promote intracellular esterification of FFA, then the rate of enzyme release should be decreased. Increased provision of glucose could also result in increased production of anaerobic ATP which could be of importance in promoting the survival of the oxygen-limited myocardium7.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Shipp, J. C., Opie, L. H., and Challoner, D., Nature, 189, 1018–1019 (1961).

    Article  ADS  CAS  Google Scholar 

  2. Randle, P. J., A. Rev. Physiol. 25, 291–324 (1963).

    Article  CAS  Google Scholar 

  3. Opie, L. H., Nature, 227, 1055–1056 (1970).

    Article  ADS  CAS  Google Scholar 

  4. Shug, A. L., and Shrago, E., J. Lab. clin. Med., 81, 214–217 (1973).

    CAS  PubMed  Google Scholar 

  5. Braasch, W., Gudbjarnason, S., Puri, P. S., Ravens, K. G., and Bing, R. J., Circulation Res., 23, 429–438 (1968).

    Article  CAS  Google Scholar 

  6. Wilkinson, J. H., and Robinson, J. M., Nature, 249, 662–663 (1974).

    Article  ADS  CAS  Google Scholar 

  7. Weissler, A. M., Kruger, F. A., Baba, N., Scarpelli, D. C., Leighton, R. F., and Gallimore, J. K., J. clin. Invest., 47, 403–416 (1968).

    Article  CAS  Google Scholar 

  8. Neely, J. R., Liebermeister, H., Battersby, E. J., and Morgan, H. E. Am. J. Physiol., 212, 804–814 (1967).

    Article  CAS  Google Scholar 

  9. Kannengiesser, G. J., Lubbe, W. F., and Opie, L. H., J. molec. cell. Cardiol. (in the press).

  10. Wroblewski, F., and La Due, J. S., Proc. Soc. exp. Biol. Med., 90, 210–213 (1955).

    Article  CAS  Google Scholar 

  11. Spector, A., Progr. biochem. Pharmacol., 6, 130–176 (1971).

    CAS  Google Scholar 

  12. Hearse, D. J., Humphrey, S. M., and Chain, E. B., J. molec. cell. Cardiol., 5, 395–407 (1973).

    Article  CAS  Google Scholar 

  13. Willebrands, A. F., ter Welle, H. F., and Tasseron, S. J. A., J. molec. cell. Cardiol., 5, 259–273 (1973).

    Article  CAS  Google Scholar 

  14. Shell, W. E., Kjekshus, J. K., and Sobel, B. E., J. clin. Invest., 50, 2614–2625 (1971).

    Article  CAS  Google Scholar 

  15. Shell, W. E., and Sobel, B. E., New Engl. J. Med., 291, 481–486 (1974).

    Article  CAS  Google Scholar 

  16. Opie, L. H., Circulation, 45, 483–490 (1972).

    Article  CAS  Google Scholar 

  17. Oliver, M. F., Circulation, 45, 491–500 (1972).

    Article  CAS  Google Scholar 

  18. Wildenthal, K., Nature, 243, 226–227 (1973).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The erratum article can be found online at https://doi.org/10.1038/254460c0

Rights and permissions

Reprints and permissions

About this article

Cite this article

DE LEIRIS, J., OPIE, L. & LUBBE, W. Effects of free fatty acid and enzyme release in experimental glucose on myocardial infarction. Nature 253, 746–747 (1975). https://doi.org/10.1038/253746a0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/253746a0

  • Springer Nature Limited

This article is cited by

Navigation