Skip to main content
Log in

Correlated Changes in Membrane Potential and ATP Concentrations in Neurospora

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

IN a variety of tissues, electrical events seem to be more closely associated with the active transport of ions and with metabolism than with the concentration gradients of ions per se. This is evident in the generation of some transepithelial potentials, for example in gastric mucosa1; in the hyperpolarization of sodium-loaded (and pumping) nerve and muscle cells2–4 and in the rapid depolarization produced by respiratory inhibitors in fungi, algae and higher plant cells5–7. Such phenomena may be described in terms of the electrogenic ion pump which separates charges across the cell membrane, thus generating a potential gradient along which ions will move. What is not certain, however, is whether the energy for this particular mode of ion transport is provided by ATP—which clearly drives the neutral coupled pumping of ions in many tissues8—or comes more directly from electron transfer, as suggested by Conway's “redox pump” hypothesis9,10. We have examined this question for the fungus Neurospora, in which the relationship between metabolic and electrical events seems particularly close.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rehm, W. S., Ann. NY Acad. Sci., 137, 591 (1966).

    Article  ADS  CAS  Google Scholar 

  2. Adrian, R. H., and Slayman, C. L., J. Physiol., 184, 970 (1966).

    Article  CAS  Google Scholar 

  3. Thomas, R. C., J. Physiol., 201, 495 (1969).

    Article  CAS  Google Scholar 

  4. Rang, H. P., and Ritchie, J. M., J. Physiol., 196, 183 (1968).

    Article  CAS  Google Scholar 

  5. Slayman, C. L., J. Gen. Physiol., 49, 93 (1965).

    Article  CAS  Google Scholar 

  6. Kitasato, H., J. Gen. Physiol., 52, 60 (1968).

    Article  CAS  Google Scholar 

  7. Etherton, B., and Higinbotham, N., Science, 131, 409 (1960).

    Article  ADS  CAS  Google Scholar 

  8. Skou, J. C., Physiol. Rev., 45, 596 (1965).

    Article  CAS  Google Scholar 

  9. Conway, E. J., Fed. Proc., 23, 680 (1964).

    CAS  PubMed  Google Scholar 

  10. Conway, E. J., Brady, T. G., and Carton, E., Biochem. J., 47, 369 (1950).

    Article  CAS  Google Scholar 

  11. Slayman, C. L., J. Gen. Physiol., 49, 69 (1965).

    Article  CAS  Google Scholar 

  12. Slayman, C. W., and Tatum, E. L., Biochim. Biophys. Acta, 88, 578 (1964).

    CAS  PubMed  Google Scholar 

  13. Marquardt, D. W., J. Soc. Indust. Appl. Math., 11, 431 (1963).

    Article  MathSciNet  Google Scholar 

  14. Chance, B., and Williams, G. R., J. Biol. Chem., 217, 429 (1955).

    CAS  PubMed  Google Scholar 

  15. Strehler, B. L., in Methods of Enzymatic Analysis (edit. by Bergmeyer, H. U.), 559 (Academic Press, New York, 1965).

    Book  Google Scholar 

  16. Denny, F. E., Contrib. Boyce Thompson Inst., 5, 95 (1933).

    CAS  Google Scholar 

  17. Ohnishi, E., Sottocasa, G., and Ernster, L., Bull Soc. Chin. Biol., 48, 1189 (1966).

    CAS  Google Scholar 

  18. Durbin, R. P., J. Gen. Physiol., 51, 233s (1968).

    CAS  Google Scholar 

  19. Forte, J. G., Adams, P. H., and Davies, R. E., Biochim. Biophys. Acta, 104 25 (1965).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

SLAYMAN, C., LU, CH. & SHANE, L. Correlated Changes in Membrane Potential and ATP Concentrations in Neurospora. Nature 226, 274–276 (1970). https://doi.org/10.1038/226274a0

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1038/226274a0

  • Springer Nature Limited

This article is cited by

Navigation