Skip to main content
Log in

Nuclear Relaxation in Phospholipids and Biological Membranes

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

ATTEMPTS have recently been made to apply high resolution proton magnetic resonance spectrometry to the problem of molecular association in biological membranes and in dispersions of phospholipids in water1–4. On the high resolution scale, line broadening gives the appearance of weak absorption by protons of fatty acid molecules. Because broad lines could result from restricted molecular motion and might indicate that fatty acid chains are immobilized in these systems, a central problem in the interpretation of spectra is the relationship between molecular mobility and linewidth. In steady-state absorption nuclear magnetic resonance (NMR) the apparent transverse relaxation time, T2, is given by the reciprocal of the linewidth. Often the T2 thus obtained is an inverse measure of correlation time and reflects molecular mobility. This interpretation is valid for isotropic solutions of small molecules, where rapid motion produces line narrowing and large values of T2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chapman, D., and Penkett, S. A., Nature, 211, 5055 (1966).

    Article  Google Scholar 

  2. Chapman, D., Kamat, V. B., de Gier, J., and Penkett, S. A., Nature, 213, 74 (1967).

    Article  ADS  CAS  Google Scholar 

  3. Chapman, D., Kamat, V. B., de Gier, J., and Penkett, S. A., J. Mol. Biol., 31, 101 (1968).

    Article  CAS  Google Scholar 

  4. Steim, J. M., in Molecular Association in Biological and Related Systems, 84, 259 (Amer. Chem. Soc. Adv. Chem. Series, 1968).

    Book  Google Scholar 

  5. Clifford, J., and Pethica, B. A., Trans. Faraday Soc., 60, 1483 (1964).

    Article  CAS  Google Scholar 

  6. Steim, J. M., Edner, O. J., and Bargoot, F. G., Science, 162, 909 (1968).

    Article  ADS  CAS  Google Scholar 

  7. Chapman, D., Leslie, R. B., and Hirz, R., Nature, 221, 260 (1969).

    Article  ADS  CAS  Google Scholar 

  8. Penkett, S. A., Flook, A. G., and Chapman, D., Chem. Phys. Lipids, 2, 273 (1968).

    Article  CAS  Google Scholar 

  9. Sheard, B., Nature, 223, 1057 (1969).

    Article  ADS  CAS  Google Scholar 

  10. Zamir, D., and Cotts, R. M., Proc. Colloq. Ampère, 13, 276 (1964).

    Google Scholar 

  11. Drain, L. E., Proc. Phys. Soc. (London), 80, 1380 (1962).

    Article  ADS  CAS  Google Scholar 

  12. Drain, L. E., J. Phys. Chem. Solids, 24, 379 (1963).

    Article  ADS  CAS  Google Scholar 

  13. Zamir, D., and Cotts, R. M., Phys. Rev., 134, A666 (1964).

    Article  ADS  Google Scholar 

  14. Zamir, D., Wayne, R. C., and Cotts, R. M., Phys. Rev. Lett., 12, 512 (1964).

    Article  Google Scholar 

  15. Carr, H. Y., and Purcell, E. M., Phys. Rev., 94, 630 (1954).

    Article  ADS  CAS  Google Scholar 

  16. Meiboom, S., and Gill, D., Rev. Sci. Instrum., 29, 688 (1958).

    Article  ADS  CAS  Google Scholar 

  17. Dodge, J. T., Mitchell, C., and Hanahan, D. J., Arch. Biochem. Biophys., 100, 119 (1963).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

KAUFMAN, S., STEIM, J. & GIBBS, J. Nuclear Relaxation in Phospholipids and Biological Membranes. Nature 225, 743–744 (1970). https://doi.org/10.1038/225743a0

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1038/225743a0

  • Springer Nature Limited

This article is cited by

Navigation