Skip to main content
Log in

Unfolding and Hydrogen Exchange of Proteins: the Three-dimensional Ising Lattice as a Model

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

WE have noted a discrepancy between the models which are used to explain two kinds of experimental data related to protein unfolding. On the one hand, recent experiments on the reversible unfolding of the proteins ribonuclease, chymotrypsinogen and myoglobin, as revealed by changes in optical rotation and light absorption as a function of temperature or pH, demonstrate that such transitions can be described by a two state or all-or-none model1–3, in which partly folded molecules are not observed. On the other hand, there are the results on isotopic hydrogen exchange of proteins4,5. This exchange (for example, >NH + D2O→>ND + DHO) is possible only for hydrogen atoms which are exposed to the solvent. Hence a portion of the hydrogen atoms of a protein molecule exchanges more slowly than do exposed hydrogens, and the rate of exchange is equal to the product of the exchange rate for free hydrogens and the degree of unfolding (kobs=ko·θunf). Experimentally one observes an enormous variety of exchange rates among buried peptide group hydrogens, whereas the two state model predicts a single degree of unfolding as well as a single rate of unfolding and hence a single rate of exchange characteristic of all buried hydrogens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Brandts, J. F., J. Amer. Chem. Soc., 86, 4291 (1964).

    Article  CAS  Google Scholar 

  2. Hermans, J., and Acampora, G., J. Amer. Chem. Soc., 89, 1547 (1967).

    Article  CAS  Google Scholar 

  3. Tanford, C., Pain, R. H., and Otchin, N. S., J. Mol. Biol, 15, 489 (1966).

    Article  CAS  Google Scholar 

  4. Hvidt, A., and Linderstrøm-Lang, K., Biochim. Biophys. Acta, 14, 574 (1954).

    Article  CAS  Google Scholar 

  5. Hvidt, A., and Nielsen, S. O., Adv. Protein Chem., 21, 1287 (1966).

    Google Scholar 

  6. Hill, T. L., Statistical Mechanics (McGraw-Hill, New York, 1956).

    MATH  Google Scholar 

  7. Ising, E., Z. Phys., 31, 253 (1923).

    Article  ADS  Google Scholar 

  8. Zimm, B. H., and Bragg, J. K., J. Chem. Phys., 31, 526 (1959).

    Article  ADS  CAS  Google Scholar 

  9. Gibbs, J. H., and DiMarzio, E. A., J. Chem. Phys., 30, 271 (1959).

    Article  ADS  CAS  Google Scholar 

  10. Peller, L., J. Phys. Chem., 63, 1194 (1959).

    Article  CAS  Google Scholar 

  11. Hill, T. L., J. Chem. Phys., 30, 383 (1959).

    Article  ADS  CAS  Google Scholar 

  12. Lumry, R., Biltonen, E., and Brandts, F. F., Biopolymers, 4, 917 (1966).

    Article  CAS  Google Scholar 

  13. Tanford, C., Adv. Protein Chem., 23, 121 (1968).

    Article  CAS  Google Scholar 

  14. Zimm, B. H., in Polyamino Acids, Polypeptides and Proteins (edit. by Stahmann, M. A.), 229 (Univ. of Wisconsin Press, Madison, 1962).

    Google Scholar 

  15. Zimm, B. H., Doty, P., and Iso, K., Proc. US Nat. Acad. Sci., 45, 1601 (1959).

    Article  ADS  CAS  Google Scholar 

  16. Hermans, J., J. Amer. Chem. Soc., 88, 2418 (1966).

    Article  CAS  Google Scholar 

  17. Karasz, F. E., and O'Reilly, J. M., Biopolymers, 4, 1015 (1966).

    Article  CAS  Google Scholar 

  18. Ackermann, T., and Rüterjans, H., Z. Physik. Chemie, 41, 116 (1969).

    Article  Google Scholar 

  19. Bryan, W. P., and Nielsen, S. O., Biochim. Biophys. Acta, 42, 552 (1960).

    Article  CAS  Google Scholar 

  20. Benson, E. S., CR Trav. Lab. Carlsberg, 31, 235 (1959).

    CAS  Google Scholar 

  21. Benson, E. S., and Linderstrø;m-Lang, K., Biochim. Biophys. Acta, 32, 579 (1959).

    Article  CAS  Google Scholar 

  22. Schechter, A. N., Morávek, L., and Anfinsen, C. B., Fed. Proc., 28, 344 (1969).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

HERMANS, J., LOHR, D. & FERRO, D. Unfolding and Hydrogen Exchange of Proteins: the Three-dimensional Ising Lattice as a Model. Nature 224, 175–177 (1969). https://doi.org/10.1038/224175a0

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1038/224175a0

  • Springer Nature Limited

This article is cited by

Navigation