Skip to main content
Log in

Negative Temperature Coefficient of the Vibrational Relaxation of Nitric Oxide: an Orientation Effect

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

ULTRASONIC and spectroscopic techniques have shown that nitric oxide (X2Π) has an abnormally high probability of vibrational relaxation in self collisions at about 300° K. According to Nikitin, the process is electronically non-adiabatic1 because of a resonance between the 1Σ+g state of the vibrationless (NO)2 collision complex and the 3Σg state with one NO molecule vibrationally excited. With the point of resonance at a potential energy of about 2.8 kcalories/mole in the 3Σg complex, the theory predicts that the probability of relaxation should decrease sharply as the temperature is decreased below 300° K. To test this prediction, we have measured the rate of vibrational relaxation down to 100° K and we find, contrary to the prediction, that the temperature coefficient is negative.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nikitin, E. E., Optics Spectrosc., 9, 8 (1960).

    ADS  Google Scholar 

  2. Basco, N., Callear, A. B., and Norrish, R. G. W., Proc. Roy. Soc., A, 260, 459 (1961); Callear, A. B., Disc. Faraday Soc., 33, 28 (1962).

    Article  ADS  CAS  Google Scholar 

  3. Callear, A. B., Pilling, M. J., and Smith, I. W. M., Trans. Faraday Soc., 64, 296 (1968).

    Google Scholar 

  4. Bauer, H. J., Kneser, H. O., and Sittig, E., J. Chem. Phys., 30, 1119 (1959).

    Article  ADS  CAS  Google Scholar 

  5. Robben, F., J. Chem. Phys., 31, 420 (1959).

    Article  ADS  CAS  Google Scholar 

  6. Wray, W. L., J. Chem. Phys., 36, 2597 (1962).

    Article  ADS  CAS  Google Scholar 

  7. Lambert, J. D., and Salter, R., Proc. Roy. Soc. A, 243, 78 (1957); Corran, P. G., Lambert, S. D., Salter, R., and Warburton, B., Proc. Roy. Soc., A, 244, 212 (1958); Shields, F. D., J. Chem. Phys., 46, 1063 (1967).

    Article  ADS  CAS  Google Scholar 

  8. Shin, H. K., J. Amer. Chem. Soc., 90, 3029 (1968).

    Article  CAS  Google Scholar 

  9. Hirschfelder, J. O., Curtiss, C. F., and Bird, R. B., Molecular Theory of Gases and Liquids (Wiley, New York, 1954).

    MATH  Google Scholar 

  10. Jackson, J. M., and Mott, N. F., Proc. Roy. Soc., A, 137, 703 (1932).

    Article  ADS  CAS  Google Scholar 

  11. Schwartz, R. N., Slawsky, Z. I., and Herzfeld, K. E., J. Chem. Phys., 20, 1591 (1952); Herzfeld, K. F., and Litovitz, T. A., Absorption and Dispersion of Ultrasonic Waves (Academic Press, New York, 1959).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

BILLINGSLEY, J., CALLEAR, A. Negative Temperature Coefficient of the Vibrational Relaxation of Nitric Oxide: an Orientation Effect. Nature 221, 1136–1137 (1969). https://doi.org/10.1038/2211136a0

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1038/2211136a0

  • Springer Nature Limited

This article is cited by

Navigation