Skip to main content

Advertisement

Log in

D-Xylose: Active Intestinal Transport in a Sodium Ion Substituted Lithium Medium

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

IT is becoming increasingly evident that the active transport of a wide variety of substances by the small intestine requires sodium ions1–4. The mechanism of active sugar transport, postulated by Crane5,6, accounts for the movement of a sugar against its own concentration gradient by virtue of an opposing sodium ion gradient. D-xylose is the only pentose which has been demonstrated to be actively transported by the small intestine7 and it has been suggested that its mechanism of transport is similar to that of the hexoses8. A criterion used to arrive at this conclusion was the apparent dependency of active D-xylose transport on sodium ions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Csáky, T. Z., and Thale, M., J. Physiol., 151, 59 (1960).

    PubMed  PubMed Central  Google Scholar 

  2. Bihler, I., and Crane, R. K., Biochim. Biophys. Acta, 59, 78 (1962).

    Article  CAS  Google Scholar 

  3. Rosenberg, I. H., Coleman, A. L., and Rosenberg, L. E., Biochim. Biophys. Acta, 102, 161 (1965).

    Article  CAS  Google Scholar 

  4. Nathans, D., Tapley, D. F., and Ross, J. E., Biochim. Biophys. Acta, 41, 211 (1960).

    Article  Google Scholar 

  5. Crane, R. K., Biochem. Biophys. Res. Commun., 17, 481 (1964).

    Article  CAS  Google Scholar 

  6. Crane, R. K., Fed. Proc., 24, 1000 (1965).

    CAS  PubMed  Google Scholar 

  7. Csàky, T. Z., and Lassen, U. V., Biochim. Biophys. Acta, 82, 215 (1964).

    Article  Google Scholar 

  8. Alvarado, F., Biochim. Biophys. Acta, 112, 292 (1966).

    Article  CAS  Google Scholar 

  9. Faust, R. G., Biochim. Biophys. Acta, 60, 604 (1962).

    Article  CAS  Google Scholar 

  10. Roe, J. H., and Rice, E. W., J. Biol. Chem., 173, 507 (1948).

    CAS  Google Scholar 

  11. Parsons, B. J., Smyth, D. H., and Taylor, C. B., J. Physiol., 144, 387 (1958).

    Article  CAS  Google Scholar 

  12. Alvarado, F., and Crane, R. K., Biochim. Biophys. Acta, 56, 170 (1962).

    Article  CAS  Google Scholar 

  13. White, A., Handler, P., and Smith, E. L., Principles of Biochemistry (McGraw-Hill, London, 1964).

    Google Scholar 

  14. Hochster, R. M., and Quastel, J. H., Metabolic Inhibitors (Academic Press, London, 1963).

    Google Scholar 

  15. Wilson, T. H., Intestinal Absorption (W. B. Saunders, Philadelphia, 1962).

    Google Scholar 

  16. Faust, R. G., and Wu, S-m. L., J. Cell. Comp. Physiol., 65, 435 (1965).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

FAUST, R., HOLLIFIELD, J. & LEADBETTER, M. D-Xylose: Active Intestinal Transport in a Sodium Ion Substituted Lithium Medium. Nature 215, 1297–1298 (1967). https://doi.org/10.1038/2151297a0

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1038/2151297a0

  • Springer Nature Limited

This article is cited by

Navigation