Skip to main content
Log in

Phosphatidyl Carnitine: a Possible Intermediate in the Biosynthesis of Phosphatidyl β-Methylcholine in Phormia regina (Meigen)

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

CARNITINE can replace the dietary choline, otherwise essential, when Phormia regina larvae are reared on a chemically defined diet1,2. When this substitution is made, β-methyl-choline almost completely replaces choline in the lecithin of the larva3,4. Similar results have been obtained with the house fly, Musca domestica Linnaeus5. γ-Butyrobetaine can also substitute for choline in the diet2, giving rise to phosphatidyl β-methylcholine6. Recent investigations by Hodgson and Dauterman7 have demonstrated that trimethyl-(3-hydroxypropyl) ammonium acetate (TMAA) inhibits the growth of P. regina larvae when the choline of the diet is replaced by carnitine or γ-butyrobetaine but does not when choline is present. Thus, it would appear to inhibit one of the metabolic reactions between carnitine or γ-butyrobetaine and the β-methylcholine moiety of phosphatidyl β-methylcholine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hodgson, E., Cheldelin, V. H., and Newburgh, R. W., Canad. J. Zool., 34, 527 (1956).

    Article  CAS  Google Scholar 

  2. Hodgson, E., Cheldelin, V. H., and Newburgh, R. W., Arch. Biochem. Biophys., 87, 48 (1960).

    Article  CAS  Google Scholar 

  3. Bieber, L. L., Cheldelin, V. H., and Newburgh, R. W., Biochem. Biophys. Res. Commun., 6, 237 (1961).

    Article  CAS  Google Scholar 

  4. Bieber, L. L., Cheldelin, V. H., and Newburgh, R. W., J. Biol. Chem., 238, 1262 (1963).

    CAS  PubMed  Google Scholar 

  5. Bridges, R. G., Ricketts, J., and Cox, J. T., J. Inst. Physiol., 11, 225 (1965).

    Article  CAS  Google Scholar 

  6. Agarwal, H. C., and Houx, N. W. H., Biochim. Biophys. Acta, 84, 353 (1964).

    CAS  PubMed  Google Scholar 

  7. Hodgson, E., and Dauterman, W. C., J. Inst. Physiol., 10, 1005 (1964).

    Article  CAS  Google Scholar 

  8. Mazzetti, F., and Lemmon, R. M., J. Org. Chem., 22, 228 (1957).

    Article  CAS  Google Scholar 

  9. McGinnis, A. J., Newburgh, R. W., and Cheldelin, V. H., J. Nutrit., 58, 309 (1956).

    CAS  PubMed  Google Scholar 

  10. Bieber, L. L., Hodgson, E., Cheldelin, V. H., Brooks, V. J., and Newburgh, R. W., J. Biol. Chem., 236, 2990 (1961).

    Google Scholar 

  11. Rouser, G., Kritchevsky, G., Dorothy, H., and Helen, L., J. Amer. Oil Chemists Soc., 40, 425 (1963).

    Article  Google Scholar 

  12. Bremer, J., J. Biol. Chem., 237, 3628 (1962).

    CAS  PubMed  Google Scholar 

  13. Bieber, L. L., and Newburgh, R. W., J. Lipid Res., 4, 397 (1963).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

MEHENDALE, H., DAUTERMAN, W. & HODGSON, E. Phosphatidyl Carnitine: a Possible Intermediate in the Biosynthesis of Phosphatidyl β-Methylcholine in Phormia regina (Meigen). Nature 211, 759–761 (1966). https://doi.org/10.1038/211759b0

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/211759b0

  • Springer Nature Limited

This article is cited by

Navigation