Skip to main content

Advertisement

Log in

Electrophoretic Mobilities of Tissue Culture Cells in Exponential and Parasynchronous Growth

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

IT has been reported1,2 that tumour cells have a higher net negative charge than their normal counterparts and that the net negative charge of tumour cells increases with increased invasiveness. It was further reported that decreased mutual adhesiveness of cells is correlated with increased surface charge3. From observations of electrophoretic mobilities of rat liver cells4 and mouse fibroblasts8 it was suggested that increased negative charge is associated with increased growth rate, and Eisenberg et al.6 showed that cell populations with increased growth rate have increased heterogeneity in electrophoretic mobilities. Cook et al.7 inferred from the small scatter of electrophoretic mobilities of individual Ehrlich ascites tumour cells that ‘the electrokinetic properties of the tumour cell surface were independent of the state of the nucleus’. This communication describes an attempt to relate the electrophoretic mobility of cells to their stage in the mitotic cycle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ambrose, E. J., James, A. M., and Lowick, J. H. B., Nature, 177, 576 (1956).

    Article  ADS  Google Scholar 

  2. Purdom, L., Ambrose, E. J., and Klein, G., Nature, 181, 1586 (1958).

    Article  CAS  ADS  Google Scholar 

  3. Ambrose, E. J., and Easty, G. C., Proc. Roy. Phys. Soc. Edin., 28, 53 (1960).

    Google Scholar 

  4. Ben-Or, S., Eisenberg, S., and Doljanski, F., Nature, 188, 1200 (1960).

    Article  ADS  Google Scholar 

  5. Heard, D. H., Seaman, G. V. F., and Simon-Reuss, I., Nature, 190, 1009, (1961).

    Article  CAS  ADS  Google Scholar 

  6. Eisenberg, S., Ben-Or, S., and Doljanski, F., Exp. Cell Res., 26, 451 (1962).

    Article  CAS  Google Scholar 

  7. Cook, G. M. W., Heard, D. H., and Seaman, G. V. F., Exp. Cell Res., 28, 27 (1962).

    Article  CAS  Google Scholar 

  8. Bootsma, D., Budke, L., and Vos, O., Exp. Cell Res., 33, 301 (1964).

    Article  CAS  Google Scholar 

  9. Petersen, D. F., and Anderson, E. C., Nature, 203, 642 (1964).

    Article  CAS  ADS  Google Scholar 

  10. Ishihara, T., Moore, G. E., and Sandberg, A. A., Cancer Res., 22, 375 (1962).

    Google Scholar 

  11. Moore, G. E., Mount, D., Tara, G., and Schwartz, N., Cancer Res., 23, 1735 (1963).

    CAS  PubMed  Google Scholar 

  12. Mayhew, E., and O'Grady, E. A. (unpublished results).

  13. Engelberg, J., Exp. Cell Res., 23, 218 (1961).

    Article  CAS  Google Scholar 

  14. Bangham, A. D., Flemans, R., Heard, D. H., and Seaman, G. V. F., Nature, 182, 642 (1958).

    Article  CAS  ADS  Google Scholar 

  15. Dustin, P., Nature, 159, 794 (1947).

    Article  CAS  ADS  Google Scholar 

  16. Walker, I. G., and Helleiner, C. W., Cancer Res., 23, 734 (1963).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

MAYHEW, E., O'GRADY, E. Electrophoretic Mobilities of Tissue Culture Cells in Exponential and Parasynchronous Growth. Nature 207, 86–87 (1965). https://doi.org/10.1038/207086a0

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/207086a0

  • Springer Nature Limited

This article is cited by

Navigation