Skip to main content
Log in

Shining a light on structural genomics

  • Review Article
  • Published:

From Nature Structural Biology

View current issue Submit your manuscript

Abstract

Determining a 'basis set' of protein folds that represent a majority of protein structures — making use of synchrotron radiation facilities — may be possible in the near future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1: a, Each encircled region represents schematically one family of proteins with sequence similarities, and each member of the family has one of a relatively small number of biochemical functions associated with the family.

Similar content being viewed by others

References

  1. Kerlavage, A.R. TIGR Microbial Genome Database. http://www.tigr.org/tdb/mdb/mdbcomplete.html (1998).

  2. Abola, E.E., Prilusky, J. & Manning, N.O. Protein data bank archivesof three- dimensional macromolecular structures. Meth. Enz. 277, 556– 571 (1997).

    Article  CAS  Google Scholar 

  3. Gerstein, M. & Levitt, M.A. Structural census of the current population of protein sequences. Proc. Natl. Acad. Sci. USA 94, 11911–11916 (1997).

    Article  CAS  Google Scholar 

  4. Fischer, D. & Eisenberg, D. Assigning folds to the proteins encoded by the genome of Mycoplasma genitalium. Proc. Natl. Acad. Sci. USA 94, 11929–11934 (1997).

    Article  CAS  Google Scholar 

  5. Boyd, D., Schierle, C. & Beckwith, J. How many membrane proteins are there? Prot. Sci. 7, 201–205 (1998).

    Article  CAS  Google Scholar 

  6. Pascarella, S. & Argos, P. A databank merging related protein structures and sequences. Prot. Engng. 5, 121–137 (1992).

    Article  CAS  Google Scholar 

  7. Orengo, C.A., Jones, D.T. & Thornton, J.M. Protein superfamilies and domain superfolds. Nature 372, 631–634 (1994).

    Article  CAS  Google Scholar 

  8. Murzin, A., Brenner, S.E., Hubbard, T. & Chothia, C SCOP: A structural classification of proteins for the investigation of sequences and structures. J. Mol. Biol. 247, 536– 540 (1995).

    CAS  Google Scholar 

  9. Gibrat, J.F., Madej, T. & Bryant, S.H. Surprising similarities in structure comparison. Curr. Opin. Struct. Biol. 6, 377–385 (1996).

    Article  CAS  Google Scholar 

  10. Holm, L. & Sander, C. Mapping the protein universe. Science 273, 595–602 (1996).

    Article  CAS  Google Scholar 

  11. Schmidt, R., Gerstein, M. & Altman, R. LPFC: an internet library of protein family core structures. Prot. Sci. 6, 246–248 (1997).

    Article  CAS  Google Scholar 

  12. Brenner, S.E., Chothia, C. & Hubbard, T.J. Population statistics of protein structures: lessons from structural classifications. Curr. Opin. Struct. Biol. 7, 369–376 (1997).

    Article  CAS  Google Scholar 

  13. Hendrickson, W. and Ogata, C. Phase determination from multiwavelength anomalous diffraction measurements. Meth. Enz. 276,494–523 (1997).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, SH. Shining a light on structural genomics. Nat Struct Mol Biol 5 (Suppl 8), 643–645 (1998). https://doi.org/10.1038/1334

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/1334

  • Springer Nature America, Inc.

This article is cited by

Navigation