Skip to main content
Log in

Stand fine root biomass and fine root morphology in old-growth beech forests as a function of precipitation and soil fertility

  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Only very limited information exists on the plasticity in size and structure of fine root systems, and fine root morphology of mature trees as a function of environmental variation. Six northwest German old-growth beech forests (Fagus sylvatica L.) differing in precipitation (520 – 1030 mm year−1) and soil acidity/fertility (acidic infertile to basic fertile) were studied by soil coring for stand totals of fine root biomass (0–40 cm plus organic horizons), vertical and horizontal root distribution patterns, the fine root necromass/biomass ratio, and fine root morphology (root specific surface area, root tip frequency, and degree of mycorrhizal infection). Stand total of fine root biomass, and vertical and horizontal fine root distribution patterns were similar in beech stands on acidic infertile and basic fertile soils. In five of six stands, stand fine root biomass ranged between 320 and 470 g m−2; fine root density showed an exponential decrease with soil depth in all profiles irrespective of soil type. An exceptionally small stand fine root biomass (<150 g m−2) was found in the driest stand with 520 mm year−1 of rainfall. In all stands, fine root morphological parameters changed markedly from the topsoil to the lower profile; differences in fine root morphology among the six stands, however, were remarkably small. Two parameters, the necromass/biomass ratio and fine root tip density (tips per soil volume), however, were both much higher in acidic than basic soils. We conclude that variation in soil acidity and fertility only weakly influences fine root system size and morphology of F. sylvatica, but affects root system structure and, probably, fine root mortality. It is hypothesized that high root tip densities in acidic infertile soils compensate for low nutrient supply rates, and large necromasses are a consequence of adverse soil chemical conditions. Data from a literature survey support the view that rainfall is another major environmental factor that influences the stand fine root biomass of F. sylvatica.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aber J D, Melillo J M, Nadelhoffer K J, McClaugherty C A and Pastor J 1985 Fine root turnover in forest ecosystems in relation to quantity and form of nitrogen availability: a comparison of two methods. Oecologia 66, 317–321.

    Google Scholar 

  • Alexander I J and Fairley R I 1983 Effects of N fertilization on populations of fine roots and mycorrhizas in spruce humus. Plant Soil 106, 179–190.

    Google Scholar 

  • Bauhus J and Bartsch N 1996 Fine-root growth in beech (Fagus sylvatica) forest gaps. Can. J. For. Res. 26, 2153–2159.

    Google Scholar 

  • Bloom A J, Chapin F S and Mooney H A 1985 Resource limitation in plants — an economic analogy. Annu. Rev. Ecol. Syst. 16, 363–392.

    Google Scholar 

  • Brække F H 1995 Responses of understorey vegetation and Scots pine root systems to fertilization at multiple deficiency stress. Plant Soil 168–169, 179–185.

    Google Scholar 

  • Devakumar A S, Prakash P G, Sathik M B M and Jacob J 1999 Drought alters the canopy architecture and micro-climate of Hevea brasiliensis trees. Trees 13, 161–167.

    Google Scholar 

  • Devisser P H, Beier B C, Rasmussen L, Kreutzer K, Steinberg N, Bredemeier M, Blanck K, Farrell E P and Cummins T 1994 Biological response of 5 forest ecosystems in the EXMAN project to input changes of water, nutrients and atmospheric loads. For. Ecol. Manage. 68, 15–29.

    Google Scholar 

  • Eissenstat D M 1992 Costs and benefits of constructing roots of small diameter. J. Plant Nutr. 15, 763–765.

    Google Scholar 

  • Eissenstat D M and Achor D S 1999 Anatomical characteristics of roots of citrus rootstocks that vary in specific root length New Phytol. 141, 309–321.

    Google Scholar 

  • Eissenstat D M and Yanai R D 1997 The ecology of root lifespan. Adv. Ecol. Res. 27, 1–60.

    Google Scholar 

  • Eissenstat D M, Wells C E, Yanai R D and Whitbeck J L 2000 Building roots in a changing environment: implications for root longevity. New Phytol. 147, 33–42.

    Google Scholar 

  • Ellenberg H 1996 Vegetation Mitteleuropas mit den Alpen. 5th ed. Ulmer-Verlag, Stuttgart.

    Google Scholar 

  • Espeleta J F and Donavan L A 2002 Fine root demography and morphology in response to soil resources availability among xeric and mesic sandhill tree species. Funct. Ecol. 16, 113–121.

    Google Scholar 

  • Fahey T J and Hughes J W 1994 Fine root dynamics in a northern hardwood forest ecosystem, Hubbard Brook Experimental Forest, NH. J. Ecol. 82, 533–548.

    Google Scholar 

  • Finér L, Messier C and De Grandpré L 1997 Fine-root dynamics in mixed boreal conifer-broad-leafed forest stands at different successional stages after fire. Can. J. For. Res. 27, 304–314.

    Google Scholar 

  • Fitter A 1996 Characteristics and functions of root systems. In Plant Roots. The Hidden Half. 2nd ed. Eds. Y Waisel, A Eshel and U Kafkafi. pp. 1–20. Marcel Dekker, New York.

    Google Scholar 

  • Fort C, Fauveau M L, Muller F, Label P, Granier A and Dreyer E 1997 Stomatal conductance, growth and root signaling in young oak seedlings subjected to partial soil drying. Tree Physiol. 17, 281–289.

    Google Scholar 

  • Friend A L, Eide M R and Hinckley T M 1990 Nitrogen stress alters root proliferation in douglas-fir seedlings. Can. J. For. Res. 20, 1524–1529.

    Google Scholar 

  • Gale M R and Grigal D F 1987 Vertical root distribution of northern species in relation to successional status. Can. J. For. Res. 17, 829–834.

    Google Scholar 

  • George E, Seith B, Schaeffer C and Marschner H 1997 Responses of Picea, Pinus and Pseudotsuga roots to heterogeneous nutrient distribution in soil. Tree Physiol. 17, 39–45.

    Google Scholar 

  • Givnish T J 1987 Comparative studies of leaf form: assessing the relative roles of selective pressures and phylogenetic constraints. New Phytol. 106(Suppl.), 131–160.

    Google Scholar 

  • Godbold D L and Jentschke G 1998 Aluminium accumulation in root cell walls coincides with inhibition of root growth but not with inhibition of magnesium uptake in Norway spruce. Physiol. Plant. 102, 553–560.

    Google Scholar 

  • Göttsche D 1972 Verteilung von Feinwurzeln und Mykorrhizen im Bodenprofil eines Buchen-und Fichtenbestandes im Solling. Mitt. Bundesforschungsanstalt f. Forst-und Holzwirtschaft 88, 1–102.

    Google Scholar 

  • Gower S T, Vogt K A and Grier C C 1992 Carbon dynamics of Rocky-Mountain Douglas-fir — influence of water and nutrient availability. Ecol. Monogr. 62, 43–65.

    Google Scholar 

  • Green R N, Trowbridge R L and Klinka K 1993 Towards a taxonomic classification of humus forms. For. Sci. Monogr. 29, 1–50.

    Google Scholar 

  • Hertel D 1999 Das Feinwurzelwerk von Rein-und Mischbeständen der Rotbuche. — Struktur, Dynamik und interspezifische Konkurrenz. Dissert. Bot. 317, 1–206.

    Google Scholar 

  • Hölscher D, Hertel D, Leuschner Ch and Hottkowitz M 2002 Tree species diversity and soil patchiness in a temperate broad-leaved forest with limited rooting space. Flora 197, 118–125.

    Google Scholar 

  • Jackson R B, Canadell J, Ehleringer J R, Mooney H A, Sala O E and Schulze E-D 1996 A global analysis of root distribution for terrestrial biomes. Oecologia 108, 389–411.

    Google Scholar 

  • Jentschke G, Drexhage M, Fritz H W, Fritz E, Schella B, Lee D H, Gruber F, Heimann J, Kuhr M, Schmidt J, Schmidt S, Zimmermann R and Godbold D L 2001 Does soil acidity reduce subsoil rooting in Norway spruce (Picea abies)? Plant Soil 237, 91–108.

    Google Scholar 

  • Joslin J D and Wolfe M H 1998 Impacts of water input manipulations on fine root production and mortality in a mature hardwood forest. Plant Soil 204, 165–174.

    Google Scholar 

  • Joslin J D, Wolfe M H and Hanson P H 2000 Effects of altered water regimes on forest root systems. New Phytol. 147, 117–129.

    Google Scholar 

  • Kalhoff M 2000 Das Feinwurzelsystem in einem Kiefern-Eichen-Mischbestand. Struktur, Dynamik und Interaktion. Dissert. Bot. 332, 1–199.

    Google Scholar 

  • Kalisz P J, Zimmerman R W and Muller R N 1987 Root density, abundance, and distribution in the mixed mesophytic forest of Eastern Kentucky. Soil Sci. Soc. Am. J. 51, 220–225.

    Google Scholar 

  • Keyes M R and Grier C C 1981 Above-and belowground net production in 40-year-old Douglas fir stand on low and high productivity sites. Can. J. For. Res. 11, 599–605.

    Google Scholar 

  • Knievel D P 1973 Procedure for estimating ratio of living and dead root dry matter in root core samples. Crop Sci. 13, 124–126.

    Google Scholar 

  • Kottke I and Agerer R 1983 Untersuchungen zur Bedeutung der Mykorrhiza in älteren Laub-und Nadelwaldbeständen des südwestlichen Keuperberglandes. Mitt. Ver. Forstl. Standortsk. Forstpflanzenzüchtung, Bundesrepublik Deutschl. 30, 30–39.

    Google Scholar 

  • Leuschner Ch 1994 Walddynamik auf Sandböden in der Lüneburger Heide, NW-Deutschland. Phytocoenologia 22, 289–324.

    Google Scholar 

  • Leuschner Ch 1998 Mechanismen der Konkurrenzüberlegenheit der Rotbuche. Ber. Reinh. Tüxen Ges. 10, 5–18.

    Google Scholar 

  • Leuschner Ch and Hertel D 2002 Fine root biomass of temperate forests in relation to soil acidity and fertility, climate, age and species. Prog. Bot. 64, 405–438.

    Google Scholar 

  • Leuschner Ch, Backes K, Hertel D, Schipka F, Schmitt U, Terborg O and Runge M 2001 Drought responses at leaf, stem and fine root levels of competitive Fagus sylvatica L. and Quercus petraea (Matt.) Liebl. trees in dry and wet years. For. Ecol. Manage. 149, 33–46.

    Google Scholar 

  • Leuschner Ch, Voß S, Foetzki A and Clases Y 2003 Variation in leaf area index and stand leaf mass of European beech (Fagus sylvatica L.) across gradients of soil acidity and precipitation. Ecosystems (under review).

  • Majdi H, Damm E and Nylund J-E 2001 Longevity of mycorrhizal roots depends on branching order and nutrient availability. New Phytol. 150, 195–202.

    Google Scholar 

  • Matzner E and Murach D 1995 Soil changes induced by air pollutant deposition and their implication for forests in Central Europe. Water Air Soil Pollut. 85, 63–76.

    Google Scholar 

  • Meyer F H 1967 Feinwurzelverteilung bei Waldbäumen in Abhängigkeit vom Substrat. Forstarchiv 38, 286–290.

    Google Scholar 

  • Oliveira M R, van Noordwijk M, Gaze S R, Brouwer G, Bona S, Mosca G and Hairiah K 2000 Auger sampling, ingrowth cores and pinboard methods. In Root Methods. A Handbook. Eds. A L Smit, A G Bengough, C Engels, M van Noordwijk, S Pellerin and S C van de Geijn. pp. 175–210. Springer, Berlin.

    Google Scholar 

  • Olsthoorn A F M 1991 Fine root density and root biomass of two Douglas-fir stands on sandy soils in the Netherlands. I. Root biomass in early summer. Neth. J. Agric. Sci. 39, 49–60.

    Google Scholar 

  • Parker M M and van Lear D H 1996 Soil heterogeneity and root distribution of mature loblolly pine stands in piedmont soils. Soil Sci. Soc. Am. J. 60, 1920–1925.

    Google Scholar 

  • Polomski J and Kuhn N 1998 Wurzelsysteme. P. Haupt Verlag, Bern. Pregitzer K S, Zak D R, Curtis P S, Kubiske M E, Teeri J A and Vogel C S 1995 Atmospheric CO2, soil nitrogen and turnover of fine roots. New Phytol. 129, 579–585.

    Google Scholar 

  • Raich J W, Riley R H and Vitousek P M 1994 Use of root-ingrowth cores to assess nutrient limitations in forest ecosystems. Can. J. For. Res. 24, 2135–2138.

    Google Scholar 

  • Reich P B, Walters M B and Ellsworth D S 1997 From tropics to tundra: Global convergence in plant functioning. Proc. Natl. Acad. Sci. USA 94, 13730–13734.

    Google Scholar 

  • Santantonio D and Hermann R K 1985 Standing crop, production, and turnover of fine roots on dry, moderate, and wet sites of mature Douglas fir in Western Oregon. Ann. Sci. For. 42, 113–142.

    Google Scholar 

  • Scherfose V 1990 Feinwurzelverteilung und Mykorrhizatypen von Pinus sylvestris in verschiedenen Bodentypen. Ber. Forsch. zentr. Waldökosysteme, Univ. Göttingen A62, 1–166.

  • Schmid I and Leuschner Ch 1998 Warum fehlt den Gipsbuchenwäldern des Kyffhäusers (Thüringen) eine Krautschicht? Forstw. Centralbl. 117, 277–288.

    Google Scholar 

  • Tyree M T, Velez V and Dalling J W 1998 Growth dynamics of root and shoot hydraulic conductance in seedlings of five neotropical tree species: scaling to show possible adaption to differing light regimes. Oecologia 114, 293–298.

    Google Scholar 

  • Van der Werf A (1996) Growth analysis and photoassimilate partitioning. In Photoassimilate Distribution in Plants and Crops: Souce-sink relationships. Eds. E Zamski and A A Schaffer. pp. 1–20. Marcel Dekker, New York.

    Google Scholar 

  • Van Praag H J, Sougnez-Remy S, Weissen F and Carletti G 1988 Root tunover in a beech stand of the Belgian Ardennes. Plant Soil 105, 87–103.

    Google Scholar 

  • Vogt K A, Edmonds R L and Grier C C 1981 Seasonal changes in biomass and vertical distribution of mycorrhizal and fibrous-textured conifer fine roots in 23-and 180-year-old subalpine Abies amabilis stands. Can. J. For. Res. 11, 223–229.

    Google Scholar 

  • Vogt K A, Vogt D J, Moore E E, Fatuga B A, Redlin M R and Edmonds R L 1987 Conifer and angiosperm fine-root biomass in relation to stand age and site productivity in Douglas-fir forests. J. Ecol. 75, 857–870.

    Google Scholar 

  • Vogt K A, Vogt D J, Palmiotto P A, Boon P, O'Hara J and Asbjornsen H 1996 Review of root dynamics in forest ecosystems grouped by climate, climatic forest type and species. Plant Soil 187, 159–219.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leuschner, C., Hertel, D., Schmid, I. et al. Stand fine root biomass and fine root morphology in old-growth beech forests as a function of precipitation and soil fertility. Plant and Soil 258, 43–56 (2004). https://doi.org/10.1023/B:PLSO.0000016508.20173.80

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:PLSO.0000016508.20173.80

Navigation