Skip to main content
Log in

General Non-Existence Theorem for Phase Transitions in One-Dimensional Systems with Short Range Interactions, and Physical Examples of Such Transitions

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

An Erratum to this article was published on 07 November 2009

Abstract

We examine critically the issue of phase transitions in one-dimensional systems with short range interactions. We begin by reviewing in detail the most famous non-existence result, namely van Hove's theorem, emphasizing its hypothesis and subsequently its limited range of applicability. To further underscore this point, we present several examples of one-dimensional short ranged models that exhibit true, thermodynamic phase transitions, with increasing level of complexity and closeness to reality. Thus having made clear the necessity for a result broader than van Hove's theorem, we set out to prove such a general non-existence theorem, widening largely the class of models known to be free of phase transitions. The theorem is presented from a rigorous mathematical point of view although examples of the framework corresponding to usual physical systems are given along the way. We close the paper with a discussion in more physical terms of the implications of this non-existence theorem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. E. H. Lieb and D. C. Mattis, Mathematical Physics in One Dimension (Academic Press, London, 1966).

    Google Scholar 

  2. J. Bernasconi and T. Schneider, Physics in One Dimension (Springer, Berlin, 1981).

    Google Scholar 

  3. D. H. Dunlap, H. L. Wu, and P. Phillips, Phys. Rev. Lett. 65:88(1990).

    Google Scholar 

  4. F. A. B. F. de Moura and M. L. Lyra, Phys. Rev. Lett. 81:3735(1998).

    Google Scholar 

  5. P. Carpena, P. Bernaola-Galvá;n, P. C. Ivanov, and H. E. Stanley, Nature 418:955(2002).

    Google Scholar 

  6. P. Carpena, P. Bernaola-Galvá;n, P. C. Ivanov, and H. E. Stanley, Nature 421:764(2003).

    Google Scholar 

  7. M. R. Evans, Brazilian J. Phys. 30:42(2000).

    Google Scholar 

  8. L. van Hove, Physica 16:137(1950) (reprinted in ref. 1, p. 28).

    Google Scholar 

  9. D. Ruelle, Statistical Mechanics: Rigorous Results (Addison-Wesley, Reading, 1989).

    Google Scholar 

  10. L. D. Landau and E. M. Lifshitz, Statistical Physics, Part 1 (Pergamon, New York, 1980).

    Google Scholar 

  11. C. D. Meyer, Matrix Analysis and Applied Linear Algebra (SIAM, Philadelphia, 2000).

    Google Scholar 

  12. R. A. Horn and C. R. Johnson, Matrix Analysis (Cambridge University Press, Cambridge, 1985).

    Google Scholar 

  13. G. Forgacs, J. M. Luck, T. M. Nieuwenhuizen, and H. Orland, Phys. Rev. Lett. 57:2184(1986); B. Derrida, V. Hakim, and J. Vannimenus, J. Stat. Phys. 66:1189(1992); G. Giguliarelli and A. L. Stella, Phys. Rev. E 53:5035(1996); P. S. Swain and A. O. Parry, J. Phys. A 30:4597(1997); T. W. Burkhardt, J. Phys. A 31:L549(1998).

    Google Scholar 

  14. D. Ruelle, Comm. Math. Phys. 9:267(1968).

    Google Scholar 

  15. G. Rushbrooke and H. Ursell, Proc. Cambridge Phil. Soc. 44:263(1948).

    Google Scholar 

  16. F. J. Dyson, Comm. Math. Phys. 12:91(1969).

    Google Scholar 

  17. J. Fröhlich and T. Spencer, Comm. Math. Phys. 81:87(1982).

    Google Scholar 

  18. C. Kittel, Am. J. Phys. 37:917(1969).

    Google Scholar 

  19. J. F. Nagle, Am. J. Phys. 36:1114(1968).

    Google Scholar 

  20. H. E. Stanley, Introduction to Phase Transitions and Critical Phenomena (Oxford University Press, Oxford, 1971).

    Google Scholar 

  21. K. Huang, Statistical Mechanics (Wiley, Singapore, 1987).

    Google Scholar 

  22. M. Plischke and B. Bergersen, Equilibrium Statistical Physics (World Scientific, Singapore, 1994).

    Google Scholar 

  23. T. Kato, Perturbation Theory for Linear Operators (Springer, Berlin, 1995).

    Google Scholar 

  24. S. T. Chui and J. D. Weeks, Phys. Rev. B 23:2438(1981).

    Google Scholar 

  25. J. M. Yeomans, Statistical Mechanics of Phase Transitions (Oxford University Press, Oxford, 1992).

    Google Scholar 

  26. T. W. Burkhardt, J. Phys. A 14:L63(1981).

    Google Scholar 

  27. T. Dauxois, M. Peyrard, and A. R. Bishop, Phys. Rev. E 47:R44(1993); T. Dauxois and M. Peyrard, Phys. Rev. E 51:4027(1995).

    Google Scholar 

  28. N. Theodorakopoulos, T. Dauxois, and M. Peyrard, Phys. Rev. Lett. 85:6(2000); T. Dauxois, N. Theodorakopoulos, and M. Peyrard, J. Stat. Phys. 107:869(2002).

    Google Scholar 

  29. N. Theodorakopoulos, http://arxiv.org/abs/cond-mat/0210188 (2002).

  30. A. Campa and A. Giansanti, Phys. Rev. E 68:3585(1998).

    Google Scholar 

  31. P. Meyer-Nieberg, Banach Lattices (Springer, Berlin, 1991).

    Google Scholar 

  32. A. C. Zaanen, Introduction to Operator Theory in Riesz Spaces (Springer, Berlin, 1997).

    Google Scholar 

  33. N. I. Akhiezer and I. M. Glazman, Theory of Linear Operators in Hilbert Space (Dover, New York, 1993).

    Google Scholar 

  34. J. A. Cuesta and A. Sá;nchez, J. Phys. A 35:2373(2002).

    Google Scholar 

  35. T. Tsuzuki and K. Sasaki, Progr. Theoret. Phys. Supp. 94:73(1988).

    Google Scholar 

  36. S. Ares, J. A. Cuesta, A. Sá;nchez, and R. Toral, Phys. Rev. E 67:046108(2003).

    Google Scholar 

  37. M. V. Simkin and V. P. Roychowdhury, Complex Sys. 14:269(2003).

    Google Scholar 

  38. C. Beck and F. Schlögl, Thermodynamics of Chaotic Systems: An Introduction (Cambridge University, Cambridge, 1993), Chapter 21.

    Google Scholar 

  39. D. Ruelle, Thermodynamic Formalism (Addison-Wesley, Reading, 1978).

    Google Scholar 

  40. V. Baladi, Positive Transfer Operators and Decay of Correlations (World Scientific, Singapore, 2000).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

An erratum to this article is available at http://dx.doi.org/10.1007/s10955-009-9862-6.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cuesta, J.A., Sánchez, A. General Non-Existence Theorem for Phase Transitions in One-Dimensional Systems with Short Range Interactions, and Physical Examples of Such Transitions. Journal of Statistical Physics 115, 869–893 (2004). https://doi.org/10.1023/B:JOSS.0000022373.63640.4e

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JOSS.0000022373.63640.4e

Navigation