Skip to main content
Log in

The Roles of Monoarticular and Biarticular Muscles of the Lower Limbs in Terrestrial Locomotion

  • Published:
Human Physiology Aims and scope Submit manuscript

Abstract

Specific features of the functioning of mono- and biarticular muscles were studied using a multijoint movement (a high jump) as an example. The powers of the knee and ankle joint extensors are insufficient for a strong and quick movement such as a high jump. Biarticular muscles (m. rectus femoris) transfer forces/powers from one joint to another, thereby compensating for the physiological shortcoming of monoarticular muscles, that is, a decrease in the tractive force with increasing contraction rate. In a high jump, a power of 300 W may be transferred from the hip to the knee joint via the m. rectus femoris; 230 W, from the knee to the hip joint via the hamstring muscle; 210 W, from the knee joint to the ankle via the m. gastrocnemius; and 15 W, from the metatarsophalangeal joint to the ankle via the mm. flexors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Korenev, V.G., Ocherki mekhaniki tselenapravlennogo dvizheniya(Essays on the Mechanics of Purposeful Motion), Moscow: Nauka, 1980.

    Google Scholar 

  2. Prilutskii, B.I. and Zatsiorskii, V.M., Finding the Forces of Human Muscles by a Preset Movement, in Sovremennye problemy biomekhaniki(Modern Problems of Biomechanics), Nizhni Novgorod, 1993, issue 7, p. 81.

  3. Biryukova, E.V., Modeling of Human Arm Movements, Biofizika, 1983, vol. 28, no. 4, p. 715.

    Google Scholar 

  4. Chow, C.K. and Jacobson, D.H., Studies of Human Locomotion via Optimal Programming, Math. Biosci., 1971, vol. 10, p. 239.

    Article  Google Scholar 

  5. Hatze, H., The Complete Optimization of a Human Motion, Math. Biosci., 1976, vol. 28, p. 99.

    Article  Google Scholar 

  6. Yeo, B.P., Investigation Concept: The Principle of Minimal Total Muscular Force, Biomechanics, 1976, vol. 9, p. 413.

    Article  Google Scholar 

  7. Fitzhugh, R.A., A Model of Optimal Voluntary Muscular Control, J. Math. Biol., 1977, vol.4, p. 203.

    PubMed  Google Scholar 

  8. Chao, E.Y. and An, K.N., Graphical Interpolation of the Solution to the Redundant Problem in Biomechanics, J. Biomech. Eng., 1978, vol. 100, p. 159.

    Google Scholar 

  9. Crowninshield, R.D., Use of Optimization Techniques to Predict Muscle Forces,J. Biomech. Eng., 1978, vol. 100, p. 88.

    Google Scholar 

  10. Crowninshield, R.D. and Brand, R.A., A Physiologically Based Criterion of Muscle Force Prediction in Locomotion, J. Biomech., 1981, vol. 14, no. 11, p. 793.

    Article  PubMed  Google Scholar 

  11. Hardt, D.E., Determination of Muscle Forces in the Leg during Normal Human Walking: An Application and Evaluation of Optimization Methods, J. Biomed. Eng., 1978, vol. 100, p. 72.

    Google Scholar 

  12. Pedotti, A. and Krishman, V.V., Optimization of Muscle-Force Sequencing in Human Locomotion, Math. Biosci., 1978, vol. 38, p. 57.

    Article  Google Scholar 

  13. Patriarco, A.G., Mann, R,W., Simon, S.R., and Mansour, J.M., An Evaluation of the Approaches of Optimization Models in the Prediction of Muscle Forces during Human Gait, J. Biomech., 1981, vol. 14, no. 8, p. 513.

    Article  PubMed  Google Scholar 

  14. Raikova, T. and Prilutsky, B.I., Sensitivity of Predicted Muscle Forces to Parameters of the Optimization-based Human Leg Model Revealed by Analytical and Numerical Analyses, J. Biomech., 2001, vol. 34, p. 1243.

    Article  PubMed  Google Scholar 

  15. An, K.N, Kaufman, K.R., and Chao, E.Y., Physiological Considerations of Muscle Force through the Elbow Joint, J. Biomech., 1989, vol. 22, no. 11, p. 1249.

    Article  PubMed  Google Scholar 

  16. An, K.N., Kwak, B.M., Chao, E.Y., and Morrey, B.F., Determination of Muscle and Joint Forces: A New Technique to Solve the Indeterminate Problem, J. Biomed. Eng., 1984, vol. 106, p. 364.

    Google Scholar 

  17. Audu, M.L. and Davy, D.T., The Influence of Muscle Model Complexity in Musculoskeletal Motion Modeling, J. Biomed. Eng., 1985, vol. 107, p. 147.

    Google Scholar 

  18. Davy, D.T. and Audu, M.L., A Dynamic Optimization Technique for Predicting Muscle Forces in the Swing Phase of Gait, J. Biomech., 1987, vol. 20, no. 2, p. 187.

    Article  PubMed  Google Scholar 

  19. Pandy, M.G., Zajak, F.E., Sim, D.G., and Levine, S.,An Optimal Control Model for Maximum-Height Human Jumping, J. Biomech., 1988, vol.23, no. 12, p. 1185.

    Article  Google Scholar 

  20. Karlsson, D. and Peterson, B., Towards a Model for Force Prediction of the Human Shoulder, J. Biomech., 1989, vol. 25, no. 2, p. 189.

    Article  Google Scholar 

  21. Herzog, W., Individual Muscle Force Prediction in Athletic Movements, PHD Thesis, Calgary, Canada: Univ.of Calgary, 1985.

    Google Scholar 

  22. Herzog, W. and Leonard, T.R., Validation of Optimization Models That Estimate the Forces Exerted by Synergistic Muscle, J. Biomech., 1991, vol. 24, suppl. 1, p. 31.

    Article  PubMed  Google Scholar 

  23. Pandy, M.G., Anderson, F.C., and Hull, D.G., A Parameter Optimization Approach for the Optimal Control of Large-Scale Musculoskeletal Systems, J. Biomech. Eng., 1992, vol. 114, p. 450.

    PubMed  Google Scholar 

  24. Harding, D.C. Brandt, K.D., and Hillberry, B.M., Finger Joint Force Minimization in Pianists Using Optimization Techniques, J. Biomech., 1993, vol. 26, no. 12, p. 1403.

    Article  PubMed  Google Scholar 

  25. Willinger, R. and Renault, D., Mathematical Model of Dynamic Muscular Behavior Force-Activity Relationship, Biomed. Eng., 1985, vol. 5, p. 251.

    Google Scholar 

  26. Bobbert, M.F., Huijing, P.A., and Shenau Jan van, I.,An Estimation of Power Output and Work Done by the Human Triceps Surae Muscle-Tendon Complex in Jumping, J. Biomech., 1986, vol. 19, p. 899.

    Article  PubMed  Google Scholar 

  27. Shiping, M. and Zahalak, G.I., A Distribution-Moment Model of Energetics in Skeletal Muscle, J. Biomech., 1991, vol. 24, no. 1, p. 21.

    Article  PubMed  Google Scholar 

  28. Raikova, R.A., General Approach for Modeling and Mathematical Investigation of the Human Upper Limb, J. Biomech., 1992, vol. 25, p. 857.

    Article  PubMed  Google Scholar 

  29. Raikova, R.A., A Model of Flexion-Extension Motion in the Elbow Joint-Some Problems Concerning Muscle Forces Modeling and Computation, J. Biomech., 1996, vol. 29, no. 6, p. 763.

    Article  PubMed  Google Scholar 

  30. Voronov, A.V. and Lavrovsky, E.K., Muscle Force Prediction Model in Speed Skating, Int. Soc. Biomech. XIV Congr., Paris, July 4-8, 1993, p. 1432.

  31. Prilutsky, B.I., Herzog, W., and Allinger, T.L., Forces of Individual Cat Ankle Extensor Muscles during Locomotion Predicted Using Static Optimization, J. Biomech., 1997, vol. 30, no. 10, p. 1025.

    Article  PubMed  Google Scholar 

  32. Prilutsky, B.I., Muscle Coordination: The Discussion Continues, Motor Control, 2000, vol. 4, p. 97.

    PubMed  Google Scholar 

  33. Seireg, A. and Arvikar, R.J., A Mathematical Model for Evaluation of Forces in Lower Extremities of the Musculoskeletal System, J. Biomech., 1973, vol. 6, p. 313.

    Article  PubMed  Google Scholar 

  34. de Luca, C. and Forrest, W.J., Force Analysis of Individual Muscles Acting Simultaneously on the Shoulder Joint during Isometric Abduction, J. Biomech., 1973, vol. 6, p. 385.

    Article  PubMed  Google Scholar 

  35. Penrod, D.D., Davy, D.T., Singh, D.P., An Optimization Approach to Tendon Force Analysis, J. Biomech., 1974, vol. 7, p. 123.

    Article  PubMed  Google Scholar 

  36. Hof, A.L. and van den Berg, J.W., Linearity between the Weighted Sum of EMG of the Human Triceps Surae and the Total Torque, J. Biomech., 1977, vol. 10, p. 529.

    Article  PubMed  Google Scholar 

  37. Pedersen, D.R., Brand, R.A, Cheng, C., and Arora, J.S., Direct Comparison of Muscle Force Prediction Using Linear and Nonlinear Programming, J. Biomed. Eng., 1978, vol. 109, p. 192.

    Google Scholar 

  38. Gill, Mc.S., A Myoelectric Based Dynamic Three-Dimensional Model to Predict Loads on Lumbar Spine Tissues during Lateral Bending, J. Biomech., 1992, vol. 25, no. 4, p. 395.

    Article  PubMed  Google Scholar 

  39. Icvhie, M., Handa, Y., Naito, A., and Matsushita, N., Hoshimiya EMG Analysis of the Thumb and Its Application to FNS, IEEE/Eighth Annu. Conf. of the Engineering in Med. and Biol. Soc., 1986, p. 538.

  40. Bobet, J. and Norman, R.W., Least-Squares Identification of the Dynamic Relation between the Electromyogram and Joint Moment, J. Biomech., 1990, vol. 23,no. 12, p. 1275.

    Article  PubMed  Google Scholar 

  41. Parker, P.A., Estimation of Muscle Force from Intramuscular Total Pressure, Med. Biomed. Eng. Comp., 1984, vol. 13, p. 453.

    Google Scholar 

  42. Hargens, A.R., Intramuscular Pressure and Electromyography as Indexes of Force during Isokinetic Exercise, J. Appl. Physiol., 1993, vol. 74, p. 2634.

    PubMed  Google Scholar 

  43. Gregor, R.J., Komi, P.V., and Jarvinen, M., Achilles Tendon Forces during Cycling, Int. J. Soc. Sport Med., 1987, vol. 8, p. 9.

    Google Scholar 

  44. Komi, P.V., Salamon, M., Jarvinen, M., and Kokko, O., In VivoRegistration of Achilles Tendon Forces in Man: 1. Methodological Development, Int. J. Soc. Sport Med., 1987, vol. 8, p. 3.

    Google Scholar 

  45. Komi, P.V., Relevance of In VivoForce Measurements to Human Biomechanics, J. Biomech., 1990, vol. 23, p. 23.

    Article  PubMed  Google Scholar 

  46. Herzog, W. and Leonard, T.R., Soleus Forces and Soleus Force Potential during Unrestrained Cat Locomotion, J. Biomech., 1996, vol. 29, no. 3, p. 271.

    Article  PubMed  Google Scholar 

  47. Malaviya, P., Butler, D.L., Korvick, D.L., and Proch, F.S., In VivoTendon Forces Correlate with Activity Level and Remain Bounded: Evidence in a Rabbit Flexor Tendon Model, J. Biomech., 1998, vol. 31, no. 11, p. 1043.

    Article  PubMed  Google Scholar 

  48. Lees, A., An Optimized Film Analysis Method Based on Finite Difference Technique, Hum. Movement Sci., 1980, vol. 4, p. 165.

    Google Scholar 

  49. Voronov, A.V. and Lavrovskii, E.K., Determination of Mass-Inertia Characteristics of a Human Leg, Fiziol. Chel., 1998, vol. 24, no. 2, p. 91.

    Google Scholar 

  50. Zatsiorskii, V.M., Aruin, A.S., and Seluyanov, V.N., Biomekhanika dvigatel'nogo apparata cheloveka(Biomechanics of the Human Motor Apparatus), Moscow: Fizkul'tura i Sport, 1981.

    Google Scholar 

  51. Voronov, A.V. and Lavrovskii, E.K., About Modeling Rational Variants of the Skating Technique, in Sovremennye problemy biomekhaniki(Modern Problems of Biomechanics), Nizhni Novgorod, 1992, issue 7, p. 144.

  52. Voronov, A.V., Anatomicheskoe stroenie i biomekhanicheskie harakteristiki myshts i sustavov nizhnei konechnosti(The Anatomical Structure and Biomechanical Characteristics of the Lower Limb Muscles and Joints), Moscow: Fizkul'tura, Obrazovanie i Nauka, 2003.

    Google Scholar 

  53. Shalmanov, A.A., Sagitov, R.I., and Krylov, A.V., Four-Component Mechanical Model of a Muscle, in Modelirovanie sportivnoi deyatel'nosti v iskusstvenno sozdannoi srede (stendy, trenazhery, imitatory(Modeling Sports Activity in the Artificially Created Environment (Testing Units, Trainers, Imitators)), Moscow: Fizkul'tura, Obrazovanie i Nauka, 1999, p. 236.

    Google Scholar 

  54. Schenau Ingen Van, G.J., An Alternative View of the Concept of Utilization of Elastic Energy in Human Movement, Hum. Movement Sci., 1984, vol. 3, p. 301.

    Article  Google Scholar 

  55. Joyce, G.C. and Rack, P.M.H., Isotonic Lengthening and Shortening Movements of Cat Soleus Muscle,J. Physiol., 1969, vol. 204, p. 475.

    PubMed  Google Scholar 

  56. Joyce, G.C., Rack, P.M.H., and Westerby, D.R., The Mechanical Properties of Soleus Muscle during Controlled Lengthening and Shortening Movements, J. Physiol., 1969, vol. 204, p. 461.

    PubMed  Google Scholar 

  57. Schenau Ingen Van, G.J., From Rotation to Translation: Constraints on Multi-Joint Movements and the Unique Action of Bilateral Muscles, Hum. Movement Sci., 1989, vol. 8, p. 301.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Voronov, A.V. The Roles of Monoarticular and Biarticular Muscles of the Lower Limbs in Terrestrial Locomotion. Human Physiology 30, 476–484 (2004). https://doi.org/10.1023/B:HUMP.0000036345.33099.4f

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:HUMP.0000036345.33099.4f

Keywords

Navigation