Skip to main content
Log in

Convergence Groups, Hausdorff Dimension, and a Theorem of Sullivan and Tukia

  • Published:
Geometriae Dedicata Aims and scope Submit manuscript

Abstract

We show that a discrete, quasiconformal group preserving ℍn has the property that its exponent of convergence and the Hausdorff dimension of its limit set detect the existence of a non-empty regular set on the sphere at infinity to ℍn. This generalizes a result due separately to Sullivan and Tukia, in which it is further assumed that the group act isometrically on ℍn, i.e. is a Kleinian group. From this generalization we are able to extract geometric information about infinite-index subgroups within certain of these groups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bishop, C. J.: Quasiconformal maps which increase dimension, Ann. Acad. Sci. Fenn. 24 (1999), 397–407.

    Google Scholar 

  2. Bishop, C. J.: Personal communication.

  3. Bishop, C. J. and Jones, P.: Hausdorff dimension and Kleinian groups, Acta Math. 179 (1997), 1–39.

    Google Scholar 

  4. Bonfert-Taylor, P.: Jorgensen's inequality for discrete convergence groups, Ann. Sci. Fenn. 25 (2000), 131–150.

    Google Scholar 

  5. Bonfert-Taylor, P. and Martin, G.: Quasiconformal groups with small dilatation I, Proc. Amer. Math. Soc. 129 (2000), 2019–2029.

    Google Scholar 

  6. Bonfert-Taylor, P. and Taylor, E. C.: Hausdorff dimension and limit sets of quasiconformal groups, Mich. Math. J. 49 (2001), 243–257.

    Google Scholar 

  7. Bonfert-Taylor, P. and Taylor, E. C.: Patterson-Sullivan theory and local analysis of limit sets, Trans. Amer. Math. Soc. 355 (2003), 787–811.

    Google Scholar 

  8. Bonfert-Taylor, P. and Taylor, E. C.: The exponent of convergence and a theorem of Astala, Indiana Univ. Math. J. 51(3) (2002), 607–623.

    Google Scholar 

  9. Bowditch, B.: Geometrical finiteness for hyperbolic groups, J. Funct. Anal. 113 (1993), 245–317.

    Google Scholar 

  10. Bowditch, B.: A topological characterization of hyperbolic groups, J. Amer. Math. Soc. 11 (1998), 643–667.

    Google Scholar 

  11. Canary, R. D., Minsky, Y. N. and Taylor, E. C.: Spectral theory, Hausdorff dimension and the topology of hyperbolic 3-manifolds, J. Geom. Anal. 9 (1999), 18–40.

    Google Scholar 

  12. Canary, R. D. and Taylor, E. C.: Kleinian groups with small limit sets, Duke Math. J. 73 (1994), 371–381.

    Google Scholar 

  13. Furasawa, H.: The exponent of convergence of Poincare´ series of combination groups, Tõhoku Math. J. 43(2) (1991), 1–7.

    Google Scholar 

  14. Garnett, J. B., Gehring, F. W. and Jones, P. W.: Quasiconformal groups and the conical limit set, In: Holomorphic Functions and Moduli, Math. Sci. Res. Inst. Publ. 11, Vol. II, Springer-Verlag, New York, 1988, pp. 59–67.

    Google Scholar 

  15. Gehring, F. W. and Martin, G. J.: Discrete quasiconformal groups I, Proc. London Math. Soc. 55(3) (1987), 331–358.

    Google Scholar 

  16. Gehring, F. W. and Martin, G. J.: Discrete quasiconformal groups II, unpublished manuscript.

  17. Gehring, F. W. and Väisälä, J.: Hausdorff dimension and quasiconformal mappings, J. London Math. Soc. 6(2) (1973), 504–512.

    Google Scholar 

  18. Maskit, B.: Kleinian Groups, Springer-Verlag, New York, 1987.

    Google Scholar 

  19. Mattila, P.: Geometry of Sets and Measures in Euclidean Spaces. Frucals and Rectifitability, Cambridge Stud. Adv. Math. 44, Cambridge University Press, Cambridge, 1995.

    Google Scholar 

  20. Nicholls, P. J.: The Ergodic Theory of Discrete Groups, Cambridge University Press, 1989.

  21. Sullivan, D.: On the ergodic theory at infinity of an arbitrary discrete group of hyperbolic motions, Riemann surfaces and related topics: In: Proceedings of the 1978 Stony Brook Conference, Ann. of Math. Stud. 97, Princeton University Press, 1981, pp. 465–496.

    Google Scholar 

  22. Susskind, P. and Swarup, G.: Limit sets of geometrically finite hyperbolic groups, Amer. J. Math. 114 (1992), 233–250.

    Google Scholar 

  23. Sullivan, D.: Entropy, Hausdorff measures old and new, and limit sets of geometrically finite Kleinian groups, Acta Math. 153 (1984), 259–277.

    Google Scholar 

  24. Tukia, P.: A quasiconformal group not isomorphic to a Möbius group, Ann. Acad. Sci. Fenn. Ser. AI Math. 10 (1985), 561–562.

    Google Scholar 

  25. Tukia, P.: The Hausdorff dimension of the limit set of a geometrically finite Kleinian group, Acta Math. 152 (1984), 127–140.

    Google Scholar 

  26. Tukia, P.: Conical limit points and uniform convergence groups, J. Reine Angew. Math. 501 (1998), 71–98.

    Google Scholar 

  27. Väisäilä, J.: Lectures on n-Dimensional Quasiconformal Mappings, Springer-Verlag, New York, 1971.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anderson, J.W., Bonfert-Taylor, P. & Taylor, E.C. Convergence Groups, Hausdorff Dimension, and a Theorem of Sullivan and Tukia. Geometriae Dedicata 103, 51–67 (2004). https://doi.org/10.1023/B:GEOM.0000013844.35478.e5

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:GEOM.0000013844.35478.e5

Navigation