Skip to main content
Log in

NanoLiterBioReactor: Long-Term Mammalian Cell Culture at Nanofabricated Scale

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

There is a need for microminiaturized cell-culture environments, i.e. NanoLiter BioReactors (NBRs), for growing and maintaining populations of up to several hundred cultured mammalian cells in volumes three orders of magnitude smaller than those contained in standard multi-well screening plates. These devices would enable the development of a new class of miniature, automated cell-based bioanalysis arrays for monitoring the immediate environment of multiple cell lines and assessing the effects of drug or toxin exposure.

We fabricated NBR prototypes, each of which incorporates a culture chamber, inlet and outlet ports, and connecting microfluidic conduits. The fluidic components were molded in polydimethylsiloxane (PDMS) using soft-lithography techniques, and sealed via plasma activation against a glass slide, which served as the primary culture substrate in the NBR. The input and outlet ports were punched into the PDMS block, and enabled the supply and withdrawal of culture medium into/from the culture chamber (10–100 nL volume), as well as cell seeding. Because of the intrinsically high oxygen permeability of the PDMS material, no additional CO2/air supply was necessary.

The developmental process for the NBR typically employed several iterations of the following steps: Conceptual design, mask generation, photolithography, soft lithography, and proof-of-concept culture assay. We have arrived at several intermediate designs. One is termed “circular NBR with a central post (CP-NBR),” another, “perfusion (grid) NBR (PG-NBR),” and a third version, “multitrap (cage) NBR (MT-NBR),” the last two providing total cell retention.

Three cells lines were tested in detail: a fibroblast cell line, CHO cells, and hepatocytes. Prior to the culturing trials, extensive biocompatibility tests were performed on all materials to be employed in the NBR design. To delineate the effect of cell seeding density on cell viability and survival, we conducted separate plating experiments using standard culture protocols in well-plate dishes. In both experiments, PicoGreen assays were used to evaluate the extent of cell growth achieved in 1–5 days following the seeding. Low seeding densities resulted in the absence of cell proliferation for some cell lines because of the deficiency of cell-cell and extracellular matrix (ECM)-cell contacts. High viabilities were achieved in all designs.

We conclude that an instrumented microfluidics-based NanoBioReactor (NBR) will represent a dramatic departure from the standard culture environment. The employment of NBRs for mammalian cell culture opens a new paradigm of cell biology, so far largely neglected in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • J.W. Allen and S.N. Bhatia, Formation of steady-state oxygen gradients in vitro. Biotechnol. Bioeng. 82, 253 (2003).

    Google Scholar 

  • R.R. Balcarcel and L.M. Clark, Metabolic screening of mammalian cell cultures using well-plates. Biotechnol. Prog. 19,98 (2003).

    Google Scholar 

  • H. Becker and C. Gartner, Polymer based micro-reactors. Revs. Molec. Biotechnol. 82, 89 (2001).

    Google Scholar 

  • J.T. Borenstein, H. Terai, K.R. King, E.J. Weinberg, M.R. Kaazempur-Mofrad, and J.P. Vacanti, Microfabrication technology for vascularized tissue engineering. Biomed. Microdev. 4, 167 (2002).

    Google Scholar 

  • C.T. Bratten, P.H. Cobbold, and J.M. Cooper, Micromachining sensors for electrochemical measurement in subnanoliter volumes. Analyt. Chem. 69, 253 (1997).

    Google Scholar 

  • M. Brischwein, E.R. Motrescu, E. Cabala, A.M. Otto, H. Grothe, and B. Wolf, Functional cellular assays with multiparametric silicon sensor. Lab. Chip. 3, 234 (2003).

    Google Scholar 

  • S.C. Cahrati and S.A. Stern, Diffusion of gases in silicone polymers: Molecular dynamics simulations. Macromol. 31, 5529 (1998).

    Google Scholar 

  • W.-J. Chang, D. Akin, M. Sedlak, M.R. Ladisch, and R. Bashir, Poly(dimethylsiloxane) (PDMS) and silicon hybrid biochip for bac-terial culture. Biomed. Microdev. 6, 281 (2003).

    Google Scholar 

  • J.M. Cooper, Towards electronic Petri dishes and picolitre-scale single-cell techniques. Trends Biotechnol. 17, 226 (1999).

    Google Scholar 

  • E.J. Crosby, Experiments in Transport Phenomena (Wiley, New York, 1961).

    Google Scholar 

  • I. De Bo, H. Van Langenhove, P. Pruuost, J. De Neve, J. Pieters, I.F.J. Vakelecom, and E. Dick, Investigation of the permeability and selec-tivity of gases and volatile organic compounds for polydimethylsilox-ane membranes. J. Membrane. Sci. 215, 303 (2003).

    Google Scholar 

  • K. Efimenko, W.E. Wallace, and J. Genzer, Surface modification of Sylgard-184 Poly(dimethyl siloxane) networks by ultraviolet and ul-traviolet/ ozone treatment. J. Coll. Interface Sci. 254, 306 (2002).

    Google Scholar 

  • S.E. Eklund, D. Taylor, E. Kozlov, A. Prokop, and D.E. Cliffel, A micro-physiometer for simultaneous measurement of changes in extracellu-lar glucose, lactate, oxygen, and acidification rate. Anal. Chem. 76, 519 (2004).

    Google Scholar 

  • A. Folch and M. Toner, Microengineering of cellular interactions. Ann Rev Biomed Eng 2, 227 (2000).

    Google Scholar 

  • M. Gerritsen, A. Kros, V. Sprakel, L.A. Lutterman, R.J.M. Nolte, and J.A. Jansen, Biocompatibility evaluation of sol-gel coatings for sub-cutaneously implantable glucose sensors. Biomat. 21, 71 (2000).

    Google Scholar 

  • A. Ghanem and M.L. Shuler, Characterization of a perfusion reactor utilizing mammalian cells on microcarrier beads. Biotechnol. Progr. 16, 471 (2000).

    Google Scholar 

  • A. Grodrian, J. Metze, Th. Henkel, M. Roth, and J.M. Kohler, Segmented flowgeneration by chip reactors for highly parallelized cell cultivation. In Biomedical Applications of Micro-and Nanoengineering, edited by D.V. Nicolau and A.P. Lee, Proc. SPIE 4937, 174 (2002).

  • F. Hafner, Cytosensor microphysiometer: Technology and recent appli-cations. Biosensors Bioelectr. 15, 149 (2000).

    Google Scholar 

  • S. Hediger, A. Sayah, J.D. Horisberger, and M.A.M. Hijs, Modular mi-crosystem for epithelial cell culture and electrical characterization. Biosens. Bioelectr. 16, 689 (2001).

    Google Scholar 

  • W.-H. Huang, W. Chang, Z. Zhang, D.-W. Pang, Z.-L. Wang, J.-K. Cheng, and D.-F. Cui, Transport, location, and quantal release mon-itoring of single cells on a microfluidic device. Anal. Chem. 76, 483 (2004).

    Google Scholar 

  • E.W.H. Jager, C. Immerstrand, K.H. Peterson, K.-E. Magnusson, I. Lundstrom, and O. Inganas, The cell clinic: Closable microvials for single cell studies. Biomed Microdev 4, 177 (2002).

    Google Scholar 

  • E.A. Johannessen, J.M. Weaver, L. Bourova, P. Svoboda, P.H. Gobbold, and J.M. Cooper, Micromachined nanocalorimetric sen-sor for ultra-low-volume cell-based assays. Analyt. Chem. 74, 2190 (2002).

    Google Scholar 

  • D.R. Jung, R. Kapur, T. Adams, K.A. Giuliano, M. Mrksich, H.G. Craighead, and D.L. Taylor, Topographical and physicochemical mod-ification of material surface to enable patterning of living cells. Crit. Rev. Biotechnol. 21, 111 (2001).

    Google Scholar 

  • J. Kim, M.K. Chaudhury, and M.J. Owen, Hydrophobic recovery of poly-dimethylsiloxane elastomer exposed to partial electrical discharge. J. Coll. Interface. Sci. 226, 231 (2000).

    Google Scholar 

  • M.W. Konrad, B. Storrie, D.A. Glaser, and L.H. Thompson, Clonal vari-ation in colony morphology and growth of CHOcells cultured on agar. Cell 10, 305 (1977).

    Google Scholar 

  • E. Leclerc, Y. Sakai, and T. Fujii, Cell culture in 3-dimensional microflu-idic structure of PDMS (polydimethylsiloxane). Biomed. Microdev. 5, 109 (2002).

    Google Scholar 

  • E. Leclerc, Y. Sakai, and T. Fujii, Microfluidic PDMS (Polydimethyl-siloxane) bioreactor for large-scale culture of hepatocytes. Biotechnol. Progr. 20, 750 (2004).

    Google Scholar 

  • S.J. Lee and S.Y. Lee, Micro total analysis system (μ-TAS) in biotech-nology. Appl. Microbiol. Biotechnol. 64, 289 (2004).

    Google Scholar 

  • M.M. Maharbiz, W.J. Holtz, R.T. Howe, and J.D. Keasling, Microbiore-actor arrays with parametric control for high-throughput experimen-tation. Biotechnol. Bioeng. 85, 376 (2004).

    Google Scholar 

  • A. Manz, N. Graber, and H.M. Widmer, Miniaturized total chemical analysis systems: A novel concept for chemical screening. Sensors Act B1, 244 (1990).

    Google Scholar 

  • J.C. McDonald and G.M. Whitesides, Poly(dimethylsiloxane) as a mate-rial for fabricating microfluidic devices. Account Chem. Res. 35, 491 (2002).

    Google Scholar 

  • T.C. Mekel, V.I. Bondar, K. Nagai, B.D. Freeman, and I. Pinnau, Gas sorption, diffusion, and permeation in poly(dimethylsiloxane). J. Poly-mer. Sci., Polymer. Phys. B 38, 415 (2000).

    Google Scholar 

  • G. Michalopoulos, H.D. Cianciulli, A.R. Novotny, A.D. Kligerman, S.C. Strom, and R.L. Jirtle, Liver regeneration studies with rat hepatocytes in primary culture. Cancer Res 42, 4673 (1982).

    Google Scholar 

  • M. Moisan, J. Barbeau, S. Moreau, J. Pelletier, M. Tabrizian, and L.H. Yahia, Low-temperature sterilization using gas plasmas: A review of the experiments and an analysis of the inactivation mechanisms. Int. J. Phamaceut. 226, 1 (2001).

    Google Scholar 

  • F. Moussy, D.J. Harrison, and R.V. Rajotte, Aminiaturized Nafion-based glucose sensor: In vitro and in vivo evaluation in dogs. Int. J. Artif. Organs. 17, 88 (1994).

    Google Scholar 

  • A.B. Newman, Trans. Amer. Inst. Chem. Eng. 27, 203 (1931).

    Google Scholar 

  • J.Y. Oldshue, Fluid Mixing Technology (McGraw-Hill, NewYork, 1983).

    Google Scholar 

  • C.H. Park, B.F. Kimler, and T.K. Smith, Clonogenic assay combined with flow cytometric cell sorting for cell-cycle analysis of human leukemic colony-forming cells. Anticancer. Res. 7, 129 (1987).

    Google Scholar 

  • P.A. Parsons-Wingerter and W.M. Saltzman, Growth versus function in the three-dimensional culture of single and aggregated hepatocytes within collagen gels. Biotechnol. Progr. 9, 600 (1993).

    Google Scholar 

  • J. Pomp, J.L. Wike, I.J.M. Ouwerkerk, C. Hoogstraten, J. Dvelaar, P.I. Schrier, J.W.H. Leer, H.D. Thames, and W.A. Brock, Cell density de-pendent plating efficiency affects outcome and interpretation of colony forming assays. Radiother. Oncol. 40, 121 (1996).

    Google Scholar 

  • M.J. Powers, K. Domansky, M.R. Kaazempur-Mofrad, A. Kalezi, A. Capitano, A. Upadhyaya, P. Kurzawski, K.E. Wack, D.B. Stolz, R. Kamm, and L.G. Griffith, A microfabricated array bioreactor for per-fused 3D liver culture. Biotechnol. Bioeng. 78, 257 (2002).

    Google Scholar 

  • A. Prokop and R.K. Bajpai, The sensitivity of biocatalysts to hydro-dynamic shear stress. In Advances in Applied Microbiology, edited by A. Laskin (Academic Press, New York, 1992), vol. 37, pp. 165–232.

    Google Scholar 

  • A. Prokop, Systems analysis and synthesis in biology and biotechnology. Int. J. Gen. Syst. 8, 1 (1982).

    Google Scholar 

  • A. Prokop, Challenges in commercial biotechnology. Part I: Product, process and market discovery. Advan. Appl. Microbiol. 40, 95 (1995).

    Google Scholar 

  • A. Sin, K.C. Chin, M.H. Jamil, Y. Kostov, G. Rao, and M.L. Shuller, The design and fabrication of three-chamber microscale cell culture devices with integrated dissolved oxygen sensors. Biotechnol. Progr. 20, 338 (2004).

    Google Scholar 

  • K. Slater, Cytotoxicity tests for high-throughput drug discovery. Curr. Opin. Biotechnol. 12, 70 (2001).

    Google Scholar 

  • J.G. Steele, G. Johnson, W.D. Norris, and P.A. Underwood, Adhesion and growth of cultured human endothelial cells on perfluorosulphonate: Role of vitronectin and fibronectin in cell attachment. Biomat. 12, 531 (1991).

    Google Scholar 

  • W.R. Tolbert, Perfusion culture systems for production of mammalian cell biomolecules. In Large Scale Mammalian Culture, edited by J. Feder and W.R. Tolbert (Academic Press, New York, 1985), pp. 97–123.

    Google Scholar 

  • T.G. van Kooten, J.F. Whitesides, and A.F. von Recum, Influence of silicone (PDMS) surface texture on human skin fibroblast proliferation as determined by cell cycle analysis. J. Biomed. Mater. Res. (Appl. Biomater.) 43, 1 (1998).

    Google Scholar 

  • K. Viravaidya and M.L. Shuller, Incorporation of 3T3-L1 cells to mimic bioaccumulation in a microscale cell culture analog device for toxicity studies. Biotechnol. Progr. 20, 590 (2004).

    Google Scholar 

  • J. Voldman, M.L. Gray, and M.A. Schmidt, Microfabrication in biology and medicine. Annu. Rev. Biomed. Eng. 1, 401 (1999).

    Google Scholar 

  • B. Wang, Z. Abdulali-Kanji, E. Dodwell, J.H. Horton, and R.D. Oleschuk, Surface characterization using chemical force microscopy and the flow performance of modified polydimethylsiloxane for mi-crofluidic device applications. Eletrophoresis 24, 1442 (2003).

    Google Scholar 

  • K.F. Weibezahn, G. Knedlitschek, H. Dertinger, W. Bier, Th. Schiller, and K. Schubert, Reconstruction of tissue layers in mechanically pro-cessed microstructures. J. Exp. Clin. Cancer. Res. 14(Suppl. 1), S41 (1995).

    Google Scholar 

  • G.M. Whitesides, E. Ostuni, S. Takayama, X. Jiang, and D.E. Ingber. Soft lithography in biology and biochemistry. Annu. Rev. Biomed. Engr. 3, 335 (2001).

    Google Scholar 

  • A.R. Wheeler, W.R. Throndset, R.J. Whelan, A.M. Leach, R.N. Zare, Y.-H. Liao, K. Farrell, I.D. Manger, and A. Daridon, Microfluidic device for single-cell analysis. Anal Chem 75, 3249 (2003).

    Google Scholar 

  • Y. Yang and R.R. Balcarcel, Determination of carbon dioxide production rates for mammalian cells in 24-well plates. Bio. Techniques. 36, 286 (2004).

    Google Scholar 

  • A. Zanzotto, N. Szita, P. Boccazzi, P. Lessard, A.J. Sinskey, and K.F. Jensen, Membrane-aerated microbioreactor for high-throughput bio-processing. Biotechnol. Bioeng. 87, 243 (2004).

    Google Scholar 

  • T.J. Zieziulewicz, D.W. Unfricht, N. Hadjout, M.A. Lynes, and D.A. Lawrence, Shrinking the biologic world—Nanobiotechnologies for toxicology. Toxicol. Sci. 74, 235 (2003).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Prokop, A., Prokop, Z., Schaffer, D. et al. NanoLiterBioReactor: Long-Term Mammalian Cell Culture at Nanofabricated Scale. Biomedical Microdevices 6, 325–339 (2004). https://doi.org/10.1023/B:BMMD.0000048564.37800.d6

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:BMMD.0000048564.37800.d6

Navigation