Skip to main content
Log in

Three-Dimensional Finite Element Modeling of Human Ear for Sound Transmission

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

An accurate, comprehensive finite element model of the human ear can provide better understanding of sound transmission, and can be used for assessing the influence of diseases on hearing and the treatment of hearing loss. In this study, we proposed a three-dimensional finite element model of the human ear that included the external ear canal, tympanic membrane (eardrum), ossicular bones, middle ear suspensory ligaments/muscles, and middle ear cavity. This model was constructed based on a complete set of histological section images of a left ear temporal bone. The finite element (FE) model of the human ear was validated by comparing model-predicted ossicular movements at the stapes footplate and tympanic membrane with published experimental measurements on human temporal bones. The FE model was employed to predict the effects of eardrum thickness and stiffness, incudostapedial joint material, and cochlear load on acoustic-mechanical transmission through the human ossicular chain. The acoustic-structural coupled FE analysis between the ear canal air column and middle ear ossicles was also conducted and the results revealed that the peak responses of both tympanic membrane and stapes footplate occurred between 3000 and 4000 Hz.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Aibara, R., J. T. Welsh, S. Puria, and R. L. Goode. Human middle-ear sound transfer function and cochlear impedance. Hear. Res. 152:100–109, 2001.

    Google Scholar 

  2. Canalis, R. F., and P. R. Lambert. The EAR—Comprehensive Otology. Philadelphia: Lippincott Williams & Wilkins, 2000.

    Google Scholar 

  3. Cho, J. R., H. W. Lee, and K. W. Kim. Free vibration analysis of baffled liquid-storage tanks by the structural-acoustic finite element formulation. J. Sound Vibration 258:847–866, 2002.

    Google Scholar 

  4. Donaldson, J. A., and J. M. Miller. Anatomy of the ear. In: Basic Sciences and Related Disciplines, Otolaryngology, Vol. 1. Philadelphia: Saunders, 1973, pp. 75–110.

    Google Scholar 

  5. Funnell, W. R. J., and C. A. Laszlo. Modeling of the cat eardrum as a thin shell using the finite-element method. J. Acoust. Soc. Am. 63:1461–1467, 1978.

    Google Scholar 

  6. Gan, R. Z., R. K. Dyer, M. W. Wood, and K. J. Dormer. Mass loading on ossicles and middle ear function. Ann. Otol. Rhinol. Laryngol. 110:478–485, 2001.

    Google Scholar 

  7. Gan, R. Z., Q. Sun, R. K. Dyer, K.-H. Chang, and K. J. Dormer. Three dimensional modeling of middle ear biomechanics and its application. Otol. Neurotol. 23:271–280, 2002.

    Google Scholar 

  8. Gan, R. Z., M. W. Wood, and K. J. Dormer. Human middle ear transfer function measured by double laser interferometry system. Otol. Neurotol. 2004 (in press).

  9. Gelfand, S. A. Hearing—An Introduction to Psychological and Physiological Acoustics. New York: Murcel Dekker, 1998, pp. 43–44.

    Google Scholar 

  10. Goode, R. L., M. Killion, K. Nakamura, and S. Nishihara. New knowledge about the function of the human middle ear: Development of an improved analog model. Am. J. Otol. 15:145–154, 1994.

    Google Scholar 

  11. Herrmann, G., and H. Liebowitz. Mechanics of bone fractures. In: Fracture: An Advanced Treatise, edited by H. Liebowitz. New York: Academic Press, 1972, pp. 772–840.

    Google Scholar 

  12. Hudde, H., and C. Weistenhöfer. A three-dimensional circuit model of the middle ear. Acustica United with Acta Acustica 83:535–549, 1997.

    Google Scholar 

  13. Kelly, D. J., P. J. Prendergast, and A. W. Blayney. The effect of prosthesis design on vibration of the reconstructed analysis of four prostheses. Otol. Neurotol. 24:11–19, 2003.

    Google Scholar 

  14. Kirikae, I. The Structure and Function of the Middle Ear. Tokyo: University of Tokyo Press, 1960.

    Google Scholar 

  15. Koike, T., and H. Wada. Modeling of the human middle ear using the finite-element method. J. Acoust. Soc. Am. 111:1306–1317, 2002.

    Google Scholar 

  16. Kringlebotn, M., and T. Gundersen. Frequency characteristics of the middle ear. J. Acoust. Soc. Am. 77:159–164, 1985.

    Google Scholar 

  17. Kringlebotn, M. Network model for the human middle ear. Scan Audiol. 17:75–85, 1988.

    Google Scholar 

  18. Lutman, M. E., and A. M. Martin. Development of an electroacoustic analogue model of the middle ear and acoustic reflex. J. Sound Vibration 64:133–157, 1979.

    Google Scholar 

  19. Lynch, T. J., V. Nedzelnitsky, and W. T. Peake. Input impedance of the cochlea in cat. J. Acoust. Soc. Am. 72:108–130, 1982.

    Google Scholar 

  20. Merchant, S. N., M. E. Ravicz, and J. J. Rosowski. Acoustic input impedance of the stapes and cochlea in human temporal bones. Hear. Res. 97:30–45, 1996.

    Google Scholar 

  21. Nishihara, S., and R. L. Goode. Measurement of tympanic membrane vibration in 99 human ears. In: Research and Otosurgery: Proceedings of the International Workshop on Middle Ear Mechanics in Research and Otosurgery, edited by K. B. Hüttenbrink: Dresden, Germany: Dresden University Press, 1997, pp. 91–93.

    Google Scholar 

  22. Prendergast, P. J., P. Ferris, H. J. Rice, and A. W. Blayncy. Vibro-acoustic modeling of the outer and middle ear using the finite element method. Audiol. Neurootol. 4:185–191, 1999.

    Google Scholar 

  23. Rabbitt, R. D., and M. H. Holmes. A fibrous dynamic continuum model of the tympanic membrane. J. Acoust. Soc. Am. 80:1716–1728, 1986.

    Google Scholar 

  24. Rosowski, J. J., and S. N. Merchant. Mechanical and acoustic analysis of middle ear reconstruction. Am. J. Otol. 16:486–497, 1995.

    Google Scholar 

  25. Sun, Q., K.-H. Chang, K. J. Dormer, R. K. Dyer, and R. Z. Gan. An advanced computer-aided geometric modeling and fabrication method for human middle ear. Med. Eng. Phys. 24:596–606, 2002.

    Google Scholar 

  26. Sun, Q., R. Z. Gan, H.-K. Chang, and K. J. Dormer. Computer-integrated finite element modeling of human middle ear. Biomech. Model. Mechanobiol. 1:109–122, 2002.

    Google Scholar 

  27. Von Békésy, G. Experiments in Hearing. New York: McGraw-Hill, 1960.

    Google Scholar 

  28. Wada, H., and T. Metoki. Analysis of dynamic behavior of human middle ear using a finite method. J. Acoust. Soc. Am. 92:3157–3168, 1992.

    Google Scholar 

  29. Wada, H., T. Koike, and T. Kobayashi. Three-dimensional finite-element method (FEM) analysis of the human middle ear. In: Research and Otosurgery: Proceedings of the International Workshop on Middle Ear Mechanics in Research and Otosurgery, edited by K. B. Hüttenbrink: Dresden, Germany: Dresden University Press, 1997, pp. 76–80.

    Google Scholar 

  30. Wever, E. G., and M. Lawrence. Physiological Acoustics. Princeton: Princeton University Press, 1982.

    Google Scholar 

  31. Zwislocki, J. Analysis of the middle ear function. Part I. Input impedance. J. Acoust. Soc. Am. 34:1514–1523, 1962.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gan, R.Z., Feng, B. & Sun, Q. Three-Dimensional Finite Element Modeling of Human Ear for Sound Transmission. Annals of Biomedical Engineering 32, 847–859 (2004). https://doi.org/10.1023/B:ABME.0000030260.22737.53

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:ABME.0000030260.22737.53

Navigation