Skip to main content
Log in

Gravitational Effects on Light Rays and Binary Pulsar Energy Loss in a Scalar Theory of Gravity

  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

We summarize a scalar bimetric theory of gravity with a preferred reference frame. The dynamics are governed by an extension of Newton's second law. We recover geodesic motion together with Newton's attraction field in the static case and find Schwarzschild's metric in the static spherical case. We build asymptotic schemes of post-Newtonian (PN) and post-Minkowskian (PM) approximations, each based on associating a conceptual family of systems with the given system. At the 1PN approximation, there is no preferred-frame effect for photons, and we hence obtain the standard predictions of GR for photons. At the 0PM approximation, an isolated system loses energy by quadrupole radiation without any monopole or dipole term. Inserting this loss into the Newtonian two-body problem gives the Peters–Mathews coefficients of the theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. C. W. Misner, K. S. Thorne, and J. A. Wheeler, Gravitation, Freeman, San Francisco (1973).

    Google Scholar 

  2. S. Carlip, Phys. Lett. A, 267, 81–87 (2000); gr-qc/9909087 (1999).

    Google Scholar 

  3. M. Arminjon, Rev. Roumaine Sci. Tech. Ser. Méc. Appl., 42, 27–57 (1997); http://geo.hmg.inpg.fr/arminjon/ pub list.html#A18.

    Google Scholar 

  4. M. Arminjon, Arch. Mech., 48, 25–52 (1996); http://geo.hmg.inpg.fr/arminjon/pub list.html#A15.

    Google Scholar 

  5. M. Arminjon, An. Univ. Bucuresti Fizica, 47, 3–21 (1998); physics/9911025 (1999).

    Google Scholar 

  6. M. Arminjon, Rev. Roumaine Sci. Tech. Ser. Méc. Appl., 43, 135–153 (1998); gr-qc/9912041 (1999).

    Google Scholar 

  7. L. Euler, Leonhardi Euleri Opera Omnia, Series Tertia, Pars Prima, B. G. Teubner, Leipzig und Bern (1911), pp. 3–15, 149-156.

    Google Scholar 

  8. M. Arminjon, “Remarks on the mathematical origin of wave mechanics and consequences for a quantum mechanics in a gravitational field,” in: 6th Intl. Conf. “Physical Interpretations of Relativity Theory” (London, 11-14 September, 1998): Supplementary Papers (M. C. Duffy, ed.), British Soc. Phil. Sci., London (1998), pp. 1–17; gr-qc/0203104 (2002).

    Google Scholar 

  9. C. Cattaneo, Nuovo Cimento, 10, 318–337 (1958).

    Google Scholar 

  10. A. A. Logunov, Yu. M. Loskutov, and M. A. Mestvirishvili, Sov. Phys. Usp., 31, 581–596 (1988).

    Google Scholar 

  11. A. A. Logunov and M. A. Mestvirishvili, The Relativistic Theory of Gravitation, Mir, Moscow (1989).

    Google Scholar 

  12. M. Arminjon, Phys. Essays, 14, 10–32 (2001); gr-qc/9911057 (1999).

    Google Scholar 

  13. L. D. Landau and E. M. Lifshitz, Classical Field Theory [in Russian] (Course of Theoretical Physics, Vol. 2), Nauka, Moscow (1967); English transl., Pergamon, Oxford (1975).

    Google Scholar 

  14. M. Arminjon, Arch. Mech., 48, 551–576 (1996); http://geo.hmg.inpg.fr/arminjon/pub list.html#A16.

    Google Scholar 

  15. S. Weinberg, Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity, Wiley, New York (1972).

    Google Scholar 

  16. C. M. Will, Theory and Experiment in Gravitational Physics, Cambridge Univ. Press, Cambridge (1993).

    Google Scholar 

  17. M. Arminjon, “Equations of motion of the mass centers in a scalar theory of gravitation: Expansion in the separation parameter,” Romanian J. Phys. (to appear); gr-qc/0202029 (2002).

  18. M. Arminjon, Internat. J. Mod. Phys. A, 17, 4203–4208 (2002); gr-qc/0205105 (2002).

    Google Scholar 

  19. T. Futamase and B. F. Schutz, Phys. Rev. D, 28, 2363–2372 (1983).

    Google Scholar 

  20. M. Arminjon, Romanian J. Phys., 45, 389–414 (2000); gr-qc/0003066 (2000).

    Google Scholar 

  21. H. Stephani, General Relativity, Cambridge Univ. Press, Cambridge (1982).

    Google Scholar 

  22. V. A. Fock, The Theory of Space, Time, and Gravitation [in Russian], Fizmatlit, Moscow (1961); English transl., Pergamon, Oxford (1959).

    Google Scholar 

  23. T. Damour and B. Schmidt, J. Math. Phys., 31, 2441–2453 (1990).

    Google Scholar 

  24. T. Damour, “The problem of motion in Newtonian and Einsteinian gravity,” in: Three Hundred Years of Gravitation (S. W. Hawking and W. Israel, eds.), Cambridge Univ. Press, Cambridge (1987), pp. 128–198.

    Google Scholar 

  25. J. H. Taylor and J. M. Weisberg, Astrophys. J., 253, 908–920 (1982).

    Google Scholar 

  26. N. Rosen, Ann. Phys., 84, 455–473 (1974).

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arminjon, M. Gravitational Effects on Light Rays and Binary Pulsar Energy Loss in a Scalar Theory of Gravity. Theoretical and Mathematical Physics 140, 1011–1027 (2004). https://doi.org/10.1023/B:TAMP.0000033037.42732.c5

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:TAMP.0000033037.42732.c5

Navigation