Skip to main content
Log in

Normal and Generalized Bose Condensation in Traps: One Dimensional Examples

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We prove the following results. (i) One-dimensional Bose gases which interact via unscaled integrable pair interactions and are confined in an external potential increasing faster than quadratically undergo a complete generalized Bose-Einstein condensation (BEC) at any temperature, in the sense that a macroscopic number of particles are distributed on ao(N) number of one-particle states. (ii) In a one dimensional harmonic trap the replacement of the oscillator frequency ω by ωN/N gives rise to a phase transition ata≡ωβ = 1 in the noninteracting gas. Fora < 1 the limit distribution ofn 0/N a is exponential and 〈n 0〉/N a →  1. Fora > 1 there is BEC with a condensate density 〈n 0〉/N →  1 − a -1. Fora   1, (N/N)(n 0−〈n 0〉) is asymptotically distributed following Gumbel's law. For anya > 0 the free energy is −(π2/6βa)N/N+o(N/N), with no singularity ata = 1. (iii) In Model (ii) both above and below the critical temperature the gas undergoes a complete generalized BEC, thus providing a coexistence of ordinary and generalized condensates below the critical point. (iv) Adding an interaction 〈U N 〉 = o(N N) to Model (ii) we prove that a complete generalized BEC occurs for any β>0.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. M. Girardeau, Relationship between systems of impenetrable bosons and fermions in one dimension.J. Math. Phys. 1:516–523 (1960).

    Google Scholar 

  2. T. D. Schultz, Note on the one-dimensional gas of impenetrable point-particle bosons,J. Math. Phys.4:666–671 (1963).

    Google Scholar 

  3. A. Lenard, Momentum distribution in the ground state of the one-dimensional system of impenetrable bosons,J. Math. Phys. 5:624–637 (1964).

    Google Scholar 

  4. P. C. Hohenberg, Existence of long-range order in one and two dimensions,Phys. Rev. 158:383–386 (1967).

    Google Scholar 

  5. M. Bouziane and Ph. Martin, Bogoliubov inequality for unbounded operators and the Bose gas,J. Math. Phys. 17:1848–1851 (1976).

    Google Scholar 

  6. M. D. Girardeau, Broken symmetry and generalized Bose condensation in restricted geometries,J. Math. Phys. 10:993–998 (1969).

    Google Scholar 

  7. N. N. Bogoliubov, Quasi-averages in problems of statistical mechanics, Dubna report D-781 (1961), in Russian.

  8. E. H. Lieb and W. Liniger, Exact analysis of an interacting Bose gas. I. The general solution of the ground state,Phys. Rev. 130:1605–1616 (1963).

    Google Scholar 

  9. F. D. M. Haldane, Effective harmonic-fluid approach to low-energy properties of one-dimensional quantum fluids,Phys. Rev. Lett. 47:1840–1843 (1981).

    Google Scholar 

  10. D. B. Creamer, H. B. Thacker, and D. Wilkinson, A study of correlation functions for the delta-function Bose gas.Physica 20D:155–186 (1986).

    Google Scholar 

  11. V. E. Korepin, N. M. Bogoliubov, and A. G. Izergin,Quantum inverse scattering method and correlation functions. (Cambridge University Press,1993), Ch. XVIII.2.

  12. S. Coleman, There are no Goldstone bosons in two dimensions,Commun. Math. Phys. 31:259–264 (1973).

    Google Scholar 

  13. L. Pitaevskii and S. Stringari, Uncertainty principle, quantum fluctuations, and broken symmetries,J. Low Temp. Phys. 85:377–388 (1991).

    Google Scholar 

  14. A. Sütö, Thermodynamic limit and proof of condensation for trapped bosons,J. Stat. Phys. 112:375–396 (2003).

    Google Scholar 

  15. K. Symanzik, Proof and refinements of an inequality of Feynman,J. Math. Phys. 6:1155–1156 (1965).

    Google Scholar 

  16. E. H. Lieb and R. Seiringer, Proof of Bose-Einstein condensation for dilute trapped gases,Phys. Rev. Lett. 88:170409 (2002).

    Google Scholar 

  17. R. Seiringer, Ground state asymptotics of a dilute, rotating gas,J. Phys. A: Math. Gen. 36:9755–9778 (2003).

    Google Scholar 

  18. F. Dalfovo, S.Giorgini, L. P. Pitaevskii, and S. Stringari, Theory of Bose-Einstein condensation in trapped gases,Rev. Mod. Phys. 71:463–512 (1999).

    Google Scholar 

  19. E. H. Lieb, R. Seiringer, and J. Yngvason, Bosons in a trap: A rigorous derivation of the Gross-Pitaevskii energy functional,Phys. Rev. A 61:043602 (2000).

    Google Scholar 

  20. A. Görlitz, J. M. Vogels, A. E. Leanhardt, C. Raman, T. L. Gustavson, J. R. Abo-Shaeer, A. P. Chikkatur, S. Gupta, S. Inouye, T. Rosenband, and W. Ketterle, Realization of Bose-Einstein condensates in lower dimensions,Phys. Rev. Lett. 87:130402 (2001).

    Google Scholar 

  21. P. Bouyer, J. H. Thywissen, F. Gerbier, M. Hugbart, S. Richard, J. Retter, and A. Aspect, One-dimensional Behaviour of Elongated Bose-Einstein Condensates Quantum Gases in Low Dimensions, (Les Houches Proceedings,2003).

  22. E. H. Lieb, R. Seiringerm, and J. Yngvason, One-dimensional bosons in three-dimensional traps,Phys. Rev. Lett. 91:150401 (2003).

    Google Scholar 

  23. D. S. Petrov, G. V. Shlyapnikov, and J. T. M. Walraven, Regimes of quantum degeneracy in trapped 1D gases,Phys. Rev. Lett. 85:3745–3749 (2000).

    Google Scholar 

  24. F. Gerbier, J. H. Thywissen, S. Richard, M. Hugbart, P. Bouyer, and A. Aspect, Momentum distribution and correlation function of quasicondensates in elongated traps,Phys. Rev. A 67:051602(R) (2003).

  25. W. Ketterle and N. J. van Druten, Bose-Einstein condensation of a finite number of particles trapped in one or three dimensions,Phys. Rev. A 54:656–660 (1996).

    Google Scholar 

  26. V. A. Zagrebnov and J.-B. Bru, The Bogoliubov model of weakly imperfect Bose gases,Phys. Rep. 350:291–434 (2001).

    Google Scholar 

  27. E. C. Titchmarsch, Eigenfunction expansions I, (Oxford at the Clarendon Press, 1962), Ch. VII.

    Google Scholar 

  28. E. Buffet and J. Pulé, Fluctuation properties of the imperfect Bose gas,J. Math. Phys. 24:1608–1616 (1983).

    Google Scholar 

  29. A. Sütö, Correlation inequalities for noninteracting Bose gases,J. Phys. A: Math. Gen. 37:615–621 (2004).

    Google Scholar 

  30. G. Roepstorff,Path Integral Approach to Quantum Physics, (Springer, Berlin,1994).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sütő, A. Normal and Generalized Bose Condensation in Traps: One Dimensional Examples. Journal of Statistical Physics 117, 301–341 (2004). https://doi.org/10.1023/B:JOSS.0000044057.55220.51

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JOSS.0000044057.55220.51

Navigation