Skip to main content
Log in

A Self-Averaging “Order Parameter” for the Sherrington-Kirkpatrick Spin Glass Model

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

Following an idea of van Enter and Griffiths, we define a self-averaging parameter for the Sherrington-Kirkpatrick (SK) spin glass which is a self-averaging version of the order parameter introduced by Aizenman, Lebowitz and Ruelle. It is strictly positive at low temperature and zero at sufficiently high temperature. The proof is based on the recent construction of the thermodynamic limit of the free energy by Guerra and Toninelli. We also discuss how our definition compares with various existing definitions of order-parameter like quantities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. F. Guerra and F. L. Toninelli, The thermodynamic limit in mean field spin glass models, Commun. Math. Phys. 230:71–79 (2002).

    Google Scholar 

  2. F. Guerra and F. L. Toninelli, Central limit theorem for fluctuations in the high temperature region of the Sherrington-Kirkpatrick spin glass model, J. Math. Phys. 43:6224–6237 (2002).

    Google Scholar 

  3. F. L. Toninelli, About the Almeida-Thouless transition line in the Sherrington-Kirkpatrick mean field spin glass model, Europhys. Lett. 60:764–767 (2002).

    Google Scholar 

  4. A. C. D. van Enter and J.L. van Hemmen, Statistical mechanical formalism for spin glasses, Phys. Rev. A 29:355–365 (1984).

    Google Scholar 

  5. D. Petritis, Equilibrium statistical mechanics of frustrated spin glasses,Annales de l 'Institute Henri Poincaré, 64:255–288 (1996).

    Google Scholar 

  6. M. Aizenman, J. L. Lebowitz, D. Ruelle, Some rigorous results on the Sherrington-Kirkpatrick spin glass model, Commun. Math. Phys. 112:3–20 (1987).

    Google Scholar 

  7. M. Talagrand, Spin glasses,a challenge to mathematicians,(Springer,2003).

  8. M. Talagrand, The generalized Parisi formula, C. R. Math. Acad. Sci. Paris, Ser. I, 337:111–114 (2003).

    Google Scholar 

  9. C. M. Newman, D. L. Stein, Nonrealistic behavior of mean field spin glasses. Phys. Rev. Lett. 91:197205 (2003).

    Google Scholar 

  10. C. M. Newman and D. L. Stein, Ordering and broken symmetry in short-ranged spin glasses, J. Phys.:Condens. Matter 15:R1319–R1364 (2003).

    Google Scholar 

  11. F. Guerra and F. L. Toninelli, The infinite volume limit in generalized mean field disordered models, Markov Proc. Rel. Fields 9:195–207 (2003).

    Google Scholar 

  12. A. C. D. van Enter and Robert B. Griffiths, The order parameter in a spin glass, Commun. Math. Phys. 20:655–659 (1983).

    Google Scholar 

  13. Robert B. Griffiths, A proof that the free energy of a spin system is extensive, J. Math. Phys. 5:1215–1222 (1964).

    Google Scholar 

  14. Klaus Hepp and Elliott H. Lieb, Equilibrium statistical mechanics of matter interacting with the quantized radiation field, Phys. Rev. A 8:2517–2525 (1973).

    Google Scholar 

  15. S. Franz, M. M ´ezard, G. Parisi and L. Peliti, The response of glassy systems to random perturbations:A bridge between equilibrium and off-equilibrium, J. Stat. Phys. 97:459–488 (1999).

    Google Scholar 

  16. M. Aizenman and P. Contucci, On the stability of the quenched state in mean field spin glass models, J. Stat. Phys. 95:765–783 (1998).

    Google Scholar 

  17. J. Frohlich and B. Zegarlinski, The high temperature phase of long range spin glasses, Commun. Math. Phys. 110:122–155; ibid 112:553–566 (1987).

    Google Scholar 

  18. A. Bovier, V. Gayrard and P. Picco, Gibbs states of the Hop field model in the regime of perfect memory, Probab. Theor. Relat. Fields, 100:329–363 (1994).

    Google Scholar 

  19. J. M. G. Amaro de Matos, A. E. Patrick and V. A. Zagrebnov, Random infinite volume Gibbs states for the Curie Weiss random field Ising model, J. Stat. Phys. 66:139–164 (1992).

    Google Scholar 

  20. L. A. Pastur and M. V. Shcherbina, Absence of self-averaging of the order-parameter in the Sherrington-Kirkpatrick model, J. Stat. Phys. 62:1–19 (1991).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wreszinski, W.F., Bolina, O. A Self-Averaging “Order Parameter” for the Sherrington-Kirkpatrick Spin Glass Model. Journal of Statistical Physics 116, 1389–1404 (2004). https://doi.org/10.1023/B:JOSS.0000041743.24497.63

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JOSS.0000041743.24497.63

Navigation