Skip to main content
Log in

Displacement Convexity for the Generalized Orthogonal Ensemble

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

The generalized orthogonal ensemble of n × n real symmetric matrices X has probability measure \(\nu _n \left( {dX} \right) = Z_n^{ - 1} \exp \left\{ { - ntracev\left( X \right)} \right\}\) where dX is the product of Lebesgue measure on the matrix entries and \(v\left( x \right) \geqslant \left( {2 + \delta } \right)\log \left| x \right|\) with δ>0. The eigenvalue distribution is concentrated on \(\left[ {{{ - A} \mathord{\left/ {\vphantom {{ - A} 2}} \right. \kern-\nulldelimiterspace} 2},{A \mathord{\left/ {\vphantom {A 2}} \right. \kern-\nulldelimiterspace} 2}} \right]\) for some A<∞. This paper establishes concentration and transportation inequalities for the distribution of eigenvalues of X under ν n when v is twice differentiable with \(v''\left( x \right) \geqslant - \kappa \) where\(3A^2 \kappa < 1\). If\(v''\left( x \right) \geqslant \kappa _0 > 0\), or if the variance of the trace is O(1/n 2), then the empirical distribution of eigenvalues converges weakly almost surely to some non-random probability measure on [−A/2, A/2] as \(O\left( {\sqrt {\log {N \mathord{\left/ {\vphantom {N {N^2 }}} \right. \kern-\nulldelimiterspace} {N^2 }}} } \right)\). These conditions are satisfied for certain polynomial potentials. The logarithmic energy is displacement convex as a functional on charge distributions, with fixed mean, along the real line. When the trace distribution satisfies a logarithmic Sobolev inequality, or equivalently a quadratic transportation inequality, the joint eigenvalue distributions and the limiting equilibrium measure likewise satisfy quadratic transportation inequalities in the sense of Talagrand.(24)

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. P. Biane and D. Voiculescu, A free probability analogue of the Wasserstein metric on the trace-state space, Geom. Funct. Anal. 11:1125–1138 (2001).

    Google Scholar 

  2. G. Blower, Almost sure weak convergence for the generalized orthogonal ensemble, J. Statist. Phys. 105:309–355 (2001).

    Google Scholar 

  3. G. Blower, The Gaussian isoperimetric inequality and concentration, Positivity 7:203–224 (2003).

    Google Scholar 

  4. S. G. Bobkov and F. G ¨otze, Exponential integrability and transportation cost related to logarithmic Sobolev inequalities, J.Funct.Anal. 163:1–28 (1999).

    Google Scholar 

  5. S. G. Bobkov and M. Ledoux, From Brunn-Minkowski to Brascamp-Lieb and to logarithmic Sobolev inequalities, Geom. Funct. Anal. 10:1028–1052 (2000).

    Google Scholar 

  6. A. Boutet de Monvel, L. Pastur, and M. Shcherbina, On the statistical mechanics approach in the random matrix theory: integrated density of states, J. Statist. Phys. 79:585–611 (1995).

    Google Scholar 

  7. Y. Brenier, Polar factorization and monotone rearrangement of vector-valued functions, Comm. Pure Appl. Math. 44:375–417 (1991).

    Google Scholar 

  8. E. Brézin, C. Itzykson, G. Parisi, and J.B. Zuber, Planar diagrams, Commun. Math. Phys. 59:35–51 (1978).

    Google Scholar 

  9. J.A. Carrillo,R. J. McCann, and C. Villani, Kinetic equilibration rates for granular media and related equations:entropy dissipation and mass transportation estimates. Rev. Mat. Iberoamericana, To appear.

  10. P. Deift, T. Kriecherbauer, T.-R. McLaughlin, S. Venakides, and X. Zhou, Asymptotics for polynomials orthogonal with respect to varying exponential weights. Int. Math. Res. Not. 16:759–782 (1997).

    Google Scholar 

  11. R. M. Dudley, Real Analysis and Probability (Wadsworth & Brooks/Cole,Paci c Grove, 1989).

  12. R. S. Ellis, Entropy, Large Deviations, and Statistical Mechanics (Springer-Verlag, New York,1985).

    Google Scholar 

  13. I. S. Gradsteyn and I. M. Ryzhik, Table of Integrals, Series and Products 5th ed. (Academic Press, San Diego,1994).

  14. A. R. Its, C. A. Tracy, and H. Widom, Random words, Toeplitz determinants and integrable systems I, in Random Matrix Models and Their Applications, P. M. Pavel and A. R. Its,eds.,MSRI Publications, Vol. 40,(Cambridge University Press, Cambridge, 2001), pp.245–258.

    Google Scholar 

  15. K. Johansson, On fluctuations of eigenvalues of random hermitian matrices. Duke Math. J. 91:151–204 (1998).

    Google Scholar 

  16. M. K.-H. Kiessling and H. Spohn, A note on the eigenvalue density of random matrices. Comm. Math. Phys. 199:683–695 (1999).

    Google Scholar 

  17. R. J. McCann, A convexity principle for interacting gases. Adv. Math. 128:153–179 (1997).

    Google Scholar 

  18. M. L. Mehta, Random Matrices, 2nd ed. (Academic Press, San Diego,1991).

    Google Scholar 

  19. N. I. Muskhelishvili, Singular Integral Equations:Boundary Problems of Function Theory and Their Applications to Mathematical Physics (P.Noordhoff N.V.,Groningen,1953).

  20. F. Otto and C. Villani, Generalization of an inequality by Talagrand and links with the logarithmic Sobolev inequality, J. Funct. Anal. 173:361–400 (2000).

    Google Scholar 

  21. L. A. Pastur, Spectral and probabilistic aspects of matrix models, Algebraic and Geomet-ric Methods in Mathematical Physics, A. Boutet de Monvel and V. A. Marchenko,eds. (Kluwer, Dordrecht, 1996)pp.205–242.

  22. L. Pastur and M. Shcherbina, Universality of the local eigenvalue statistics for a class of unitary invariant random matrix ensembles. J. Statist. Phys. 86:109–147 (1997).

    Google Scholar 

  23. E. B. Saff and V. Totik, Logarithmic Potentials With External Fields (Springer, Berlin, 1997).

    Google Scholar 

  24. M. Talagrand, Transportation cost for Gaussian and other product measures, Geom. Funct. Anal. 6:587–600 (1996).

    Google Scholar 

  25. F. G. Tricomi, Integral Equations (Interscience, New York,1957).

    Google Scholar 

  26. C. Villani, Topics in Optimal Transportation (American Mathematical Society, Rhode Island,2003).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blower, G. Displacement Convexity for the Generalized Orthogonal Ensemble. Journal of Statistical Physics 116, 1359–1387 (2004). https://doi.org/10.1023/B:JOSS.0000041742.86859.cd

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JOSS.0000041742.86859.cd

Navigation