Skip to main content
Log in

Discrete Charges on a Two Dimensional Conductor

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We investigate the electrostatic equilibria of N discrete charges of size 1/N on a two dimensional conductor (domain). We study the distribution of the charges on symmetric domains including the ellipse, the hypotrochoid and various regular polygons, with an emphasis on understanding the distributions of the charges, as the shape of the underlying conductor becomes singular. We find that there are two regimes of behavior, a symmetric regime for smooth conductors, and a symmetry broken regime for “singular” domains. For smooth conductors, the locations of the charges can be determined, to within \(O\left( {\sqrt {\log {N \mathord{\left/ {\vphantom {N {N^2 }}} \right. \kern-\nulldelimiterspace} {N^2 }}} } \right)\) by an integral equation due to Pommerenke [ Math. Ann., 179: 212–218, (1969)]. We present a derivation of a related (but different) integral equation, which has the same solutions. We also solve the equation to obtain (asymptotic) solutions which show universal behavior in the distribution of the charges in conductors with somewhat smooth cusps. Conductors with sharp cusps and singularities show qualitatively different behavior, where the symmetry of the problem is broken, and the distribution of the discrete charges does not respect the symmetry of the underlying domain. We investigate the symmetry breaking both theoretically, and numerically, and find good agreement between our theory and the numerics. We also find that the universality in the distribution of the charges near the cusps persists in the symmetry broken regime, although this distribution is very different from the one given by the integral equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. M. Abramowitz and I. A. Stegun, editors.Handbook of mathematical functions with formulas, graphs, and mathematical tables. Dover Publications Inc., New York, 1992. Reprint of the 1972 edition.

    Google Scholar 

  2. O. Agam, E. Bettelheim, P. Wiegmann, and A. Zabrodin, Viscous fingering and the shape of an Electronic droplet in the Quantum hall regime. Phys.Rev.Lett. 88:236801, (2002).

    Google Scholar 

  3. C. D. Ahlbrandt and A. C. Peterson, Discrete Hamiltonian systems,volume 16 of Kluwer Texts in the Mathematical Sciences Kluwer Academic Publishers Group, Dordrecht, 1996. Difference equations, continued fractions, and Riccati equations.

    Google Scholar 

  4. V. V. Andrievskii and H.-P. Blatt, Discrepancy of signed measures and polynomial approximation. Springer Monographs in Mathematics. Springer-Verlag, New York (2002).

    Google Scholar 

  5. V. I. Arnold and A. Avez, editors. Ergodic Problems of Classical Mechanics.Benjamin, New York (1968).

    Google Scholar 

  6. M. Bowick, A. Cacciuto, D. Nelson, and al.Crystalline order on a sphere and the generalized Thomson problem. Phys.Rev.Lett. 89:185502 (2002).

    Google Scholar 

  7. M. Bowick, D. Nelson, and A. Travesset, Interacting topological defects on frozen topographies. Phys.Rev.B 62:8738–8751 (2000).

    Google Scholar 

  8. J. H. Conway and N. J. A. Sloane, Sphere packings,lattices and groups,volume 290 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences ]. Springer-Verlag, New York, third edition, 1999.With additional contributions by E. Bannai, R. E. Borcherds, J. Leech, S. P. Norton, A. M. Odlyzko, R. A. Parker, L. Queen and B.B. Venkov.

    Google Scholar 

  9. P. Deift, T. Kriecherbauer, and K. T.-R. McLaughlin, New results on the equilibrium measure for logarithmic potentials in the presence of an external field. J.Approx.Theory, 95 (3):388–475 (1998).

    Google Scholar 

  10. T. A. Driscoll and L. N. Trefethen, Schwarz-Christoffel Mapping. Cambridge monographs on applied and computational mathematics. Cambridge University Press, Cambridge UK,2002.

    Google Scholar 

  11. T. Erber and G. M. Hockney, Complex systems:equilibrium con gurations of N equal charges on a sphere (2⩾N⩾112).In Advances in chemical physics,Vol. XCVIII, Adv. Chem. Phys., XCVIII, pages 495–594. Wiley, New York (1997).

    Google Scholar 

  12. M. J. Feigenbaum, I. Procaccia, and B. Davidovich, Dynamics of finger formation in Laplacian growth without surface tension. J.Statist.Phys. 103 (5–6):973–1007 (2001).

    Google Scholar 

  13. M. Fekete,über die verteilung der wurzeln bei gewissen algebraischen gleichungen mit ganzzahligen koef zienten. Math.Z. 17:228–249 (1923).

    Google Scholar 

  14. O. Frostman, Potentiel d'équilibre et capacité des ensembles avec quelques applications à la théorie des fonctions. Dissertation, Lunds Univ. Mat. Sem. 3:1–118 1935.Dissertation.

    Google Scholar 

  15. W. Gangbo and R.J. McCann, The geometry of optimal transportation. Acta Math. 177 (2):113–161 (1996).

    Google Scholar 

  16. I.S. Gradstein and I.M. Ryshik, Summen-,Produkt-und Integraltafeln.Band 1,2.Verlag Harri Deutsch, Thun, language edition,1982.Translation from the Russian edited by Ludwig Boll,Based on the second German-English edition translated by Christa Berg, Lothar Berg and Martin Strauss,Incorporating the fth Russian edition edited by Yu.V. Geronimus and M.Yu.Tse?tlin.

    Google Scholar 

  17. J.M. Greene, J.Math.Phys. 20:1183 (1979).

    Google Scholar 

  18. M.B. Hastings and L.S. Levitov, Laplacian growth as one-dimensional turbulence. Physica D, 116 (1–2):244–252 (1998).

    Google Scholar 

  19. T.L. Hughes, A.D. Klironomos, and A.T. Dorsey, Fingering of electron droplets in nonuniform magnetic fields. preprint, September 2002.

  20. L.P. Kadanoff, Scaling for a critical Kolmogorov-Arnold-Moser trajectory. Phys.Rev. Lett. 47:1641 (1981).

    Google Scholar 

  21. L.P. Kadanoff and S.J. Shenker, Critical behavior of a KAM surface:I.Empirical results. J.Stat.Phys. 27:631 (1982).

    Google Scholar 

  22. J. Korevaar, Asymptotically neutral distributions of electrons and polynomial approximation. Ann.of Math.(2) 80:403–410 (1964).

    Google Scholar 

  23. J. Korevaar, Fekete extreme points and related problems. In Approximation theory and function series (Budapest,1995),volume 5 of Bolyai Soc.Math.Stud. pages 35–62.János Bolyai Math.Soc.,Budapest,1996.

    Google Scholar 

  24. J. Korevaar and T. Geveci. Fields due to electrons on an analytic curve. SIAM J.Math. Anal. 2:445–453 (1971).

    Google Scholar 

  25. I. K. Kostov, I. Krichever, M. Mineev-Weinstein, P.B. Wiegmann, and A. Zabrodin, The ?-function for analytic curves. In Random Matrix Models and Their Applications, Vol. 40 of Math.Sci.Res.Inst.Publ., 285–299. Cambridge Univ. Press, Cambridge, (2001).

    Google Scholar 

  26. B. A. Kupershmidt, KP or mKP, Vol. 78 of Mathematical Surveys and Monographs. American Mathematical Society,Providence,RI,2000.Noncommutative mathematics of Lagrangian,Hamiltonian,and integrable systems.

  27. C. Pommerenke,Über die Faberschen Polynome schlichter Funktionen. Math.Z. 85:197–208 (1964).

    Google Scholar 

  28. C. Pommerenke,Über die Verteilung der Fekete-Punkte. Math.Ann. 168:111–127 (1967).

    Google Scholar 

  29. C. Pommerenke,Über die Verteilung der Fekete-Punkte.II. Math.Ann. 179:212–218 (1969).

    Google Scholar 

  30. C. Pommerenke, Boundary behaviour of conformal maps,volume 299 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences ]. Springer-Verlag, Berlin,1992.

    Google Scholar 

  31. R. T. Rockafellar, Convex Analysis. Princeton Landmarks in Mathematics. Princeton University Press, Princeton, NJ,1997.Reprint of the 1970 original,Princeton Paper-backs.

    Google Scholar 

  32. I. Singer, Abstract convex analysis.Canadian mathematical society series of monographs and advanced texts.John Wiley & Sons Inc., New York,1997.With a foreword by A.M. Rubinov,A Wiley-Interscience Publication.

    Google Scholar 

  33. T. J. Stieltjes, Sur quelques th éorèmes d 'algèbre. C.R.Acad Sci.Paris Sér.I Math. 100:620–622 (1885).

    Google Scholar 

  34. G. Szegö, Orthogonal polynomials. American mathematical society colloquium publications, Vol. 23. Revised ed. American Mathematical Society, Providence, R.I., 1959.

    Google Scholar 

  35. J. Thompson, Philos.Mag 7237 (1904).

  36. V. Totik, Weighted approximation with varying weight,volume 1569 of Lecture Notes in Mathematics. Springer-Verlag, Berlin,1994.

    Google Scholar 

  37. L. N. Trefethen, Numerical computation of the Schwarz-Christoffel transformation. SIAM J. Sci. Stat. Comp. 1:82–102 (1980).

    Google Scholar 

  38. G. Valent and W. Van Assche, The impact of Stieltjes 'work on continued fractions and orthogonal polynomials:additional material. J. Comput. Appl. Math. 65 (1-3):419–447 (1995).

    Google Scholar 

  39. E. T. Whittaker and G. N. Watson, A Course of Modern Analysis. Cambridge Mathematical Library. Cambridge University Press, Cambridge,1996.An introduction to the. general theory of in nite processes and of analytic functions;with an account of the principal transcendental functions,Reprint of the fourth edition.

    Google Scholar 

  40. P. B. Wiegmann and A. Zabrodin, Conformal maps and integrable hierarchies. Comm. Math.Phys. 213 (3):523–538 (2000).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kleine Berkenbusch, M., Claus, I., Dunn, C. et al. Discrete Charges on a Two Dimensional Conductor. Journal of Statistical Physics 116, 1301–1358 (2004). https://doi.org/10.1023/B:JOSS.0000041741.27244.ac

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JOSS.0000041741.27244.ac

Navigation