Skip to main content
Log in

Limit Lognormal Multifractal as an Exponential Functional

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

The limiting distribution of the limit lognormal multifractal, first introduced by Mandelbrot (Statistical Models and Turbulence, M. Rosenblatt and C. Van Atta, eds., Lecture Notes in Physics 12, Springer, New York, 1972, p. 333) and constructed explicitly by Bacry et al. (Phys. Rev. E 64, 026103 (2001)), is investigated using its Laplace transform. A partial differential equation for the Laplace transform is derived and it is shown that multifractality alone does not determine the limiting distribution. The increments of the limit multifractal process are strongly stochastically dependent. The precise nature of this stochastic dependence structure of increments (SDSI) is the determining characteristic of the limiting distribution. The SDSI of the limit process is quantified by means of two integro-differential relations obtained by renormalization in the sense of Leipnik (J. Aust. Math. Soc. B 32, 327–347 (1991)). One is interpreted as a counterpart of the star equation of Mandelbrot and the other is shown to be an analogue of the classical Girsanov theorem. In the weak intermittency limit an approximate single-variable equation for the Laplace transform is obtained and successfully tested numerically by simulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. M. Arbeiter and N. Patzschke,Math.Nachr. 181:5–42 (1996).

    Google Scholar 

  2. A. Arneodo, E. Bacry,and J.F. Muzy,Physica A 213:232–275 (1995).

    Google Scholar 

  3. E. Bacry, J. Delour,and J.F. Muzy,Phys.Rev.E 64:026103 (2001).

    Google Scholar 

  4. E. Bacry and J.F. Muzy,Comm.Math.Phys. 236:449–475 (2003).

    Google Scholar 

  5. J. Barral,Prob.Theory.Relat.Fields 113(4):535–569 (1999).

    Google Scholar 

  6. J. Barral and B.B. Mandelbrot,Prob.Theory Relat.Fields 124(3):409–430 (2002).

    Google Scholar 

  7. B. Castaung, Y. Gagne,and E. Hop nger,Physica D 46:177–200 (1990).

    Google Scholar 

  8. B. Duplantier,Phys.Rev.Let. 82:880–883 (1999).

    Google Scholar 

  9. B. Duplantier,J.Stat.Phys. 110:691–738 (2003).

    Google Scholar 

  10. D. Dufresne,Adv.Appl.Prob. 33:223–241 (2001).

    Google Scholar 

  11. U. Frisch, Turbulence, (Cambridge University Press, Cambridge,1995).

    Google Scholar 

  12. U. Frisch and G. Parisi, in Proc.Int.Summer School on 'Turbulence and Predictability in Geophysical Fluid Dynamics and Climate Dynamics ',M. Ghil et al.,eds.(North-Holland, Amsterdam,1985),p.84.

    Google Scholar 

  13. I.V. Girsanov,Theory Probab.Appl. 5:285–301 (1960).

    Google Scholar 

  14. Y. Guivarc 'h, C.R.Academ.Sci.Paris 305, serie I, 139–141 (1987).

  15. T. Halsey, B. Duplantier,and K. Honda, Phys.Rev.Let. 78(9):1719–1722 (1997).

    Google Scholar 

  16. T. Halsey, M. Jensen, L. Kadanoff, I. Procaccia,and B. Shrauman, Phys.Rev.A 33:1141–1151 (1986).

    Google Scholar 

  17. H. Hentschel and I. Procaccia,Physica D 8:435–444 (1983).

    Google Scholar 

  18. J.-P. Hovi and A. Aharony,Phys.Rev.E 56(1):172–184 (1997).

    Google Scholar 

  19. J.P. Kahane,Ann.Sci.Math.Quebec 9:105–150 (1985).

    Google Scholar 

  20. J.P. Kahane,Chi.Ann.Math. 8B, 1–12 (1987).

  21. J.P. Kahane,in Fractal Geometry and Analysis,J. Belaur and S. Dubuc,eds.(Kluwer, Boston,1991),p.277.

  22. J.P. Kahane and J. Peyriere,Adv.Math. 22:131–145 (1976).

    Google Scholar 

  23. R.B. Leipnik,J.Aust.Math.Soc.B 32:327–347 (1991).

    Google Scholar 

  24. P. Levy,Processus Stochastiques at Mouvement Brownien, (Gauthier-Villars, Paris, 1948).

  25. Q. Liu,Stoch.Proc.Appl. 95:83–107 (2001).

    Google Scholar 

  26. P. Meakin, H.E. Stanley, A. Coniglio,and T.A. Witten, Phys.Rev.A 32(4) 2364–2369 (1985).

    Google Scholar 

  27. B.B. Mandelbrot, in Statistical Models and Turbulence, M. Rosenblatt and C. Van Atta, eds.(Lecture Notes in Physics 12, Springer, New York, 1972),p. 333.

    Google Scholar 

  28. B.B. Mandelbrot, J.Fluid Mech. 62:331–358 (1974).

    Google Scholar 

  29. B.B. Mandelbrot, C.R.Academ.Sci.Paris 278A, 289–292 & 355–358 (1974).

    Google Scholar 

  30. B.B. Mandelbrot, in Frontiers of Physics:Landau Memorial Conference, E.A. Gotsman et al.,eds. (Pergamon, New York, 1990), p. 309

    Google Scholar 

  31. B.B. Mandelbrot, Proc.Royal Soc.London Ser.A 434:79–88 (1991).

    Google Scholar 

  32. B.B. Mandelbrot and H. Taylor, Oper.Res. 15:1057–1062 (1967).

    Google Scholar 

  33. B.B. Mandelbrot and J.W. Van Ness, Siam Rev. 10:422–437 (1968).

    Google Scholar 

  34. C. Meneveau and K.R. Sreenivasan, J.Fluid Mech. 224:429–484 (1991).

    Google Scholar 

  35. G.M. Molchan, Comm.Math.Phys. 179:681–702 (1996).

    Google Scholar 

  36. J.F. Muzy and E. Bacry, Phys.Rev.E 66(5):056121 (2002).

    Google Scholar 

  37. J.F. Muzy, J. Delour and E. Bacry, Eur.Phys.J.B 17:537–548 (2000).

    Google Scholar 

  38. E.A. Novikov,Phys.Fluids A 2(5):814–820 (1990).

    Google Scholar 

  39. K. Sato, Levy Processes and In nitely Divisible Distributions, (Cambridge University Press, Cambridge, 1999).

    Google Scholar 

  40. D. Schertzer,and S. Lovejoy, J.Geophys.Res. 92:9693–9721 (1987).

    Google Scholar 

  41. D. Schertzer, S. Lovejoy, F. Schmitt, Y. Chigirinskaya,and D. Marsan, Fractals 5:427–471 (1997).

    Google Scholar 

  42. F. Schmitt and D. Marsan, Eur.J.Phys.B 20:3–6,(2001).

    Google Scholar 

  43. F. Schmitt, D. Schertzer,and S. Lovejoy, Appl.Stochastic Models Data Anal. 15:29–53 (1999).

    Google Scholar 

  44. T. Tel, Z.Naturforsch 43a, 1154–1174 (1988).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ostrovsky, D. Limit Lognormal Multifractal as an Exponential Functional. Journal of Statistical Physics 116, 1491–1520 (2004). https://doi.org/10.1023/B:JOSS.0000041726.07161.46

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JOSS.0000041726.07161.46

Navigation