Skip to main content
Log in

Electromagnetic Field Theory Without Divergence Problems 1. The Born Legacy

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

Born's quest for the elusive divergence problem-free quantum theory of electromagnetism led to the important discovery of the nonlinear Maxwell–Born–Infeld equations for the classical electromagnetic fields, the sources of which are classical point charges in motion. The law of motion for these point charges has however been missing, because the Lorentz self-force in the relativistic Newtonian (formal) law of motion is ill-defined in magnitude and direction. In the present paper it is shown that a relativistic Hamilton–Jacobi type law of point charge motion can be consistently coupled with the nonlinear Maxwell–Born–Infeld field equations to obtain a well-defined relativistic classical electrodynamics with point charges. Curiously, while the point charges are spinless, the Pauli principle for bosons can be incorporated. Born's reasoning for calculating the value of his aether constant is re-assessed and found to be inconclusive.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. M. Abraham, Theorie der Elektrizität, II(Teubner, Leipzig, 1905, 1923).

    Google Scholar 

  2. W. Appel and M. K.-H. Kiessling, Mass and spin renormalization in Lorentz Electrodynamics, Annals Phys. (N.Y.) 289:24–83 (2001).

    Google Scholar 

  3. W. Appel and M. K.-H. Kiessling, Scattering and radiation damping in Gyroscopic Lorentz electrodynamics, Lett. Math. Phys. 60:31–46 (2002).

    Google Scholar 

  4. V. Bach, J. Frohlich, and I. M. Sigal, Quantum electrodynamics of confined nonrelativistic particles, Adv. Math. 137:299–395 (1998).

    Google Scholar 

  5. D. Bambusi and L. Galgani, Some rigorous results on the Pauli-Fierz model of classical electrodynamics, Ann. Inst. H. Poincaré, Phys. Theor. 58:155–171 (1993).

    Google Scholar 

  6. B. Bambusi and D. Noja, On classical electrodynamics of point particles and renormalization: Some preliminary results, Lett. Math Phys. 37:449–436 (1996).

    Google Scholar 

  7. R. Bartnik, Existence of maximal surfaces in asymptotically flat spacetimes, Commun. Math. Phys. 94:155–175 (1984).

    Google Scholar 

  8. A. O. Barut, Electrodynamics and Classical Theory of Fields and Particles(Dover, New York, 1964).

    Google Scholar 

  9. G. Bauer, Ein Existenzsatz für die Wheeler-Feynman-Elektrodynamik, Doctoral Dissertation (Ludwig Maximilians Universitat, Munchen, 1998).

    Google Scholar 

  10. G. Bauer and D. Durr, The Maxwell-Lorentz system of a rigid charge, Ann. Inst. H. Poincaré 2:179–196 (2001).

    Google Scholar 

  11. I. Bialynicki-Birula, Nonlinear electrodynamics: Variations on a theme by Born and Infeld, in Quantum Theory of Particles and Fields, special volume in honor of Jan Lopusza$#x0144;ski, B. Jancewicz, and J. Lukierski, eds. (World Scientific, Singapore, 1983), pp. 31–48.

    Google Scholar 

  12. I. Bialynicki-Birula, Field theory of photon dust, Acta Phys. Pol. B 23, 553–557 (1992).

    Google Scholar 

  13. I. Bialynicki-Birula and Z. Bialynicka-Birula, Quantum Electrodynamics(Pergamon Press, Oxford, 1975).

    Google Scholar 

  14. G. Boillat, Nonlinear electrodynamics: Lagrangians and equations of motion, J. Math. Phys. 11:941–951 (1970).

    Google Scholar 

  15. M. Born, Der Impuls-Energie-Satz in der Elektrodynamik von Mie, Nachr. Ges. Wiss. Göttingen, Math.-Phys. Kl. Heft 1:23–36 (1914).

    Google Scholar 

  16. M. Born, Modified field equations with a finite radius of the electron, Nature 132:282 (1933).

    Google Scholar 

  17. M. Born, On the quantum theory of the electromagnetic field, Proc. Roy. Soc. A 143: 410–437 (1934).

    Google Scholar 

  18. M. Born, Theorie non-lineare du champ electromagnetique, Ann. Inst. H. Poincaré 7:155–265 (1937).

    Google Scholar 

  19. M. Born, Atomic Physics, 8th rev. ed. (Blackie & Son Ltd., Glasgow, 1969).

    Google Scholar 

  20. M. Born and L. Infeld, Electromagnetic mass, Nature 132:970 (1933).

    Google Scholar 

  21. M. Born and L. Infeld, Foundation of the new field theory, Nature 132:1004 (1933); Proc. Roy. Soc. London A 144:425-451 (1934).

    Google Scholar 

  22. M. Born and L. Infeld, On the quantization of the new field equations. Part I, Proc. Roy. Soc. London A 147:522–546 (1934); Part II, Proc. Roy. Soc. London A 150:141-166 (1935).

    Google Scholar 

  23. N. Bournaveas, Local existence for the Maxwell-Dirac equations in three space dimensions, Commun. PDE 21:693–720 (1996).

    Google Scholar 

  24. Y. Brenier, Hydrodynamic structure of the augmented Born-Infeld equations, Arch. Rat. Mech. Anal., in press (2004).

  25. E. Calabi, Examples of Bernstein problems for some non-linear equations, in Global Analysis, Berkeley 1968, S. Smale and S. S. Chern, eds., Proc. Sympos. Pure Math., Vol. 15 (AMS, Providence, 1970), pp. 223–230.

    Google Scholar 

  26. D. Chae and H. Huh, Global existence for small initial data in the Born-Infeld equations, J. Math. Phys. 44:6132–6139 (2003).

    Google Scholar 

  27. S. Y. Cheng and S. T. Yau, Maximal spacelike hypersurfaces in the Lorentz-Minkowski spaces, Annals Math. 104:407–419 (1976).

    Google Scholar 

  28. A. A. Chernitskii, Nonlinear electrodynamics with singularities (modernized Born-Infeld electrodynamics), Helv. Phys. Acta 71:274–287 (1998).

    Google Scholar 

  29. D. Christodoulou, The action principle and partial differential equations, in Annals Math. Stud., Vol. 146 (Princeton University Press, Princeton, 2000).

    Google Scholar 

  30. D. Christodoulou and S. Klainerman, The global nonlinear stability of the Minkowski space, in Princeton Math. Ser., Vol. 41 (Princeton University Press, Princeton, 1993).

    Google Scholar 

  31. D. Chru$#x015B;ci$#x0144;ski, Point charge in the Born-Infeld electrodynamics, Phys. Lett. A 240:8–14 (1998).

    Google Scholar 

  32. D. Chru$#x015B;ci$#x0144;ski, Canonical formalism for the Born-Infeld particle, J. Phys. A 31:5775–5786 (1998).

    Google Scholar 

  33. A. Connes and D. Kreimer, Renormalization in quantum field theory and the Riemann-Hilbert problem I: The Hopf algebra structure of graphs and the main theorem, Commun. Math. Phys. 210:249–273 (2000).

    Google Scholar 

  34. A. Connes and D. Kreimer, Renormalization in quantum field theory and the Riemann-Hilbert problem II: The b-function, diffeomorphisms and the renormalization group, Commun. Math. Phys. 216:215–241 (2001).

    Google Scholar 

  35. W. N. Cottingham, The isolated electron, in Electron-A Centenary Volume, M. Springford, ed. (Cambridge University Press, 1997), pp. 24–38.

  36. P. A. M. Dirac, Classical theory of radiating electrons, Proc. Roy. Soc. A 167:148–169 (1938).

    Google Scholar 

  37. P. A. M. Dirac, A reformulation of the Born-Infeld electrodynamics, Proc. Roy. Soc. A 257:32–43 (1960).

    Google Scholar 

  38. D. Durr, S. Goldstein, J. Taylor, and N. Zangh$#x00EC;, Bosons, Fermions, and the Natural Configuration Space of Identical Particles(Rutgers University, March 2003), preprint.

  39. F. Dyson, Divergence of perturbation theory in quantum electrodynamics, Phys. Rev. 85:631–632 (1952).

    Google Scholar 

  40. F. Dyson, Infinite in all Directions(Harper & Row, New York, 1988).

    Google Scholar 

  41. K. Ecker, Area maximizing hypersurfaces in Minkowski space having an isolated singularity, Manuscr. Math. 56:375–397 (1986).

    Google Scholar 

  42. A. Einstein, Zur Elektrodynamik bewegter Korper, Ann. Phys. 17:891–921 (1905).

    Google Scholar 

  43. M. Flato, J. C. H. Simon, and E. Taflin, Asymptotic completeness, global existence, and the infrared problem for the Maxwell-Dirac equations, hep-th/9502061 (1995).

  44. J. Frenkel, Zur Elektrodynamik punktformiger Elektronen, Z. Phys. 32:518–534 (1925).

    Google Scholar 

  45. G. W. Gibbons, Born-Infeld particles and Dirichlet p-branes, Nucl. Phys. B 514:603–639 (1998).

    Google Scholar 

  46. G. W. Gibbons, Pulse propagation in Born-Infeld theory, the world volume equivalence principle, the Hagedorn-like equation of state of the Chaplygin gas, hep-th/0104015 (2001).

  47. H.-P. Gittel, J. Kijowski, and E. Zeidler, The relativistic dynamics of the combined particle-field system in renormalized classical electrodynamics, Commun. Math. Phys. 198:711–736 (1998).

    Google Scholar 

  48. J. Glimm and A. Jaffe, Quantum Physics, 2nd ed. (Springer, New York, 1980).

    Google Scholar 

  49. S. W. Hawking and G. F. R. Ellis, The Large Scale Structure of Space-Time(Cambridge University Press, Cambridge, 1973).

    Google Scholar 

  50. J. M. Heinzle and R. Steinbauer, Remarks on the distributional Schwarzschild geometry, J. Math. Phys. 43:1493–1508 (2002).

    Google Scholar 

  51. D. Hilbert, Die Grundlagen der Physik, Nachr. Konigl. Ges. Wiss. Gottingen, Math. Phys. Kl.395–407 (1916); ibid.53-76 (1917); Math. Annal. 92:1-32 (1924).

  52. J. Hoppe, Some classical solutions of relativistic membrane equations in 4 space-time dimensions, Phys. Lett. B 329, 10–14 (1994).

    Google Scholar 

  53. J. Hoppe, Conservation laws and formation of singularities in relativistic theories of extended objects, hep-th/9503069 (1995).

  54. A. M. Ignatov and V. P. Poponin, Pulse interaction in nonlinear vacuum electrodynamics, hep-th/0008021 (2000).

  55. L. Infeld, The new action function and the unitary field theory, Proc. Camb. Phil. Soc. 32:127–137 (1936).

    Google Scholar 

  56. L. Infeld, A new group of action functions in the unitary field theory. II, Proc. Camb. Phil. Soc. 33:70–78 (1937).

    Google Scholar 

  57. J. D. Jackson, Classical Electrodynamics, 2nd ed. (Wiley, New York, 1975); 3rd ed. (1999).

    Google Scholar 

  58. J. D. Jackson and L. B. Okun, Historical roots of gauge invariance, Rev. Mod. Phys. 73:663–680 (2001).

    Google Scholar 

  59. J. D. Jackson, From Lorenz to Coulomb and other explicit gauge transformations, Amer. J. Phys. 70:917–928 (2002).

    Google Scholar 

  60. J. M. Jauch and F. Rohrlich, The Theory of Photons and Electrons(Springer, NY, 1976).

    Google Scholar 

  61. R. Jost, Das Märchen vom elfenbeinernen Turm. (Reden und Aufsätze)(Springer-Verlag, Wien, 2002).

    Google Scholar 

  62. M. K.-H. Kiessling, Classical electron theory and conservation laws, Phys. Lett. A 258:197–204 (1999).

    Google Scholar 

  63. M. K.-H. Kiessling, Electromagnetic field theory without divergence problems. 2. A least invasively quantized theory, J. Stat. Phys. 116:1123–1159 (2004).

    Google Scholar 

  64. A. A. Klyachin, Solvability of the Dirichlet problem for the maximal surface equation with singularities in unbounded domains, Dokl. Russ. Akad. Nauk 342:161–164 (1995); English transl. in Dokl. Math. 51:340-342 (1995).

    Google Scholar 

  65. A. A. Klyachin and V. M. Miklyukov, Existence of solutions with singularities for the maximal surface equation in Minkowski space, Mat. Sb. 184:03–124 (1993); English transl. in Russ. Acad. Sci. Sb. Math. 80:87-104 (1995).

    Google Scholar 

  66. A. Komech and H. Spohn, Long-time asymptotics for the coupled Maxwell-Lorentz equations, Commun. PDE 25:559–584 (2000).

    Google Scholar 

  67. M. Kunze and H. Spohn, Adiabatic limit of the Maxwell-Lorentz equations, Ann. Inst. H. Poincaré, Phys. Théor., 1:625–653 (2000).

    Google Scholar 

  68. L. Landau and E. M. Lifshitz, The Theory of Classical Fields(Pergamon Press, Oxford, 1962).

    Google Scholar 

  69. E. H. Lieb, Sharp constants in the Hardy-Littlewood-Sobolev and related inequalities, Annals Math. 118:349–374 (1983).

    Google Scholar 

  70. E. H. Lieb and M. Loss, Self-energy of electrons in non-perturbative QED, in Differential Equations and Mathematical Physics, R. Weikard and G. Weinstein, eds., Amer. Math. Soc./Internat. Press (2000) (University Alabama, Birmingham, 1999), pp. 255–269.

    Google Scholar 

  71. E. H. Lieb and M. Loss, A bound on binding energies and mass renormalization in models of quantum electrodynamics, J. Stat. Phys. 108:1057–1069 (2002).

    Google Scholar 

  72. A. Lienard, Champ electrique et magnetique produit par une charge concentree en un point et animee d'un mouvement quelconque, L'Éclairage électrique 16:5; ibid.,53; ibid., 106 (1898).

  73. H. Lindblad, A remark on Global existence for small initial data of the minimal surface equation in Minkowskian space time e-print at www.arXiv.org (math.AP/0210056).

  74. H. A. Lorentz, Weiterbildung der Maxwell'schen Theorie: Elektronentheorie, in Encyklopädie d. Mathematischen Wissenschaften, Band V 2, Heft 1, Art. 14 (1904), pp. 145–288.

    Google Scholar 

  75. H. A. Lorentz, T he Theory of Electrons and Its Applications to the Phenomena of Light and Radiant Heat, 2nd Ed. (1915); reprinted by (Dover, New York, 1952).

  76. G. Mie, Beitrage zur Optik truber Medien, speziell kolloidaler Metallosungen, Ann. Phys. 25:377–452 (1908).

    Google Scholar 

  77. G. Mie, Grundlagen einer Theorie der Materie, Ann. Phys. 37:511–534 (1912); ibid. 39:1-40 (1912); ibid. 40:1-66 (1913).

    Google Scholar 

  78. C. W. Misner, K. S. Thorne, and J. A. Wheeler, Gravitation(W. H. Freeman Co., New York 1973).

    Google Scholar 

  79. J. Moser, On Harnack's theorem for elliptic differential equations, Comm. Pure Appl. Math. 14:577–591 (1961).

    Google Scholar 

  80. D. Noja and A. Posilicano, On the point limit of the Pauli-Fierz model, Ann. Inst. H. Poincaré, Phys. Theor. 71:425–457 (1999).

    Google Scholar 

  81. W. K. H. Panofsky and M. Phillips, C lassical Electricity and Magnetism, 2nd ed. (Addison-Wesley, Reading, Massachusetts, 1962).

    Google Scholar 

  82. W. Pauli, Relativitätstheorie, Encyklopädie der mathematischen Wissenschaften, Vol. 19, B. G. Teubner, ed. (Leipzig, 1921); Engl. Transl. (with new additions by W. Pauli): Theory of Relativity(Pergamon Press, 1958); reprinted by (Dover, New York, 1981).

  83. R. Peierls, More Surprises in Theoretical Physics(Princeton University, 1991).

  84. R. Penrose, The Emperor's New Mind(2nd corrected reprint) (Oxford University Press, New York, 1990).

    Google Scholar 

  85. J. Plebański, Lecture notes on nonlinear electrodynamics, NORDITA(1970), (quoted in ref. 11).

  86. M. H. L. Pryce, On a uniqueness theorem, Proc. Camb. Phil. Soc. 31:625–628 (1935).

    Google Scholar 

  87. M. H. L. Pryce, Commuting co-ordinates in the new field theory, Proc. Roy. Soc. London A 150:166–172 (1935).

    Google Scholar 

  88. M. H. L. Pryce, On the new field theory, Proc. Roy. Soc. London A 155:597–613 (1936).

    Google Scholar 

  89. M. H. L. Pryce, On the new field theory. II. Quantum theory of field and charges, Proc. Roy. Soc. London A 159:355–382 (1937).

    Google Scholar 

  90. F. Rohrlich, Classical Charged Particles(Addison-Wesley, Redwood City, CA, 1990).

    Google Scholar 

  91. E. Schrodinger, Contribution to Born's new theory of the electromagnetic field, Proc. Roy. Soc. London A 150:465–477 (1935).

    Google Scholar 

  92. E. Schrodinger, Non-linear optics, Proc. Roy. Irish Acad. A 47:77–117 (1942).

    Google Scholar 

  93. E. Schrodinger, Dynamics and scattering-power of Born's electron, Proc. Roy. Irish Acad. A 48:91–122 (1942).

    Google Scholar 

  94. E. Schrodinger, A new exact solution in non-linear optics (two-wave system), Proc. Roy. Irish Acad. A 49:59–66 (1943).

    Google Scholar 

  95. S. Schweber, QED and the man who made it: Dyson, Feynman, Schwinger, and Tomonaga(Princeton University Press, 1994).

  96. Spohn, H., Dynamics of Charged Particles and their Radiation Field(Cambridge University Press, Cambridge, 2004).

    Google Scholar 

  97. R. F. Streater and A. Wightman, PCT, Spin and Statistics, and All That(Princeton University Press, Princeton, 1964).

    Google Scholar 

  98. E. C. G. Sudarshan and N. Mukunda, Classical Dynamics: a Modern Perspective(Wiley, New York, 1974).

    Google Scholar 

  99. W. E. Thirring, Classical Mathematical Physics, (Dynamical Systems and Field Theory), 3rd ed. (Springer-Verlag, New York, 1997).

    Google Scholar 

  100. S. Weinberg, High energy behavior in quantum field theory, Phys. Rev. 118:838–849 (1960).

    Google Scholar 

  101. S. Weinberg, Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity(Wiley, New York, 1972).

  102. S. Weinberg, The Quantum Theory of Fields, Vol. I (Cambridge University Press, Cambridge, 1995).

    Google Scholar 

  103. H. Weyl, Raum, Zeit, Materie(Springer-Verlag, Berlin, 1918).

    Google Scholar 

  104. J. A. Wheeler and R. Feynman, Classical electrodynamics in terms of direct particle Interactions, Rev. Mod. Phys. 21:425–433 (1949).

    Google Scholar 

  105. E. Wiechert, Die Theorie der Elektrodynamik und die Rontgen'sche Entdeckung, Schriften der Physikalisch-ökonomischen Gesellschaft zu Königsberg in Preussen 37:1–48 (1896).

    Google Scholar 

  106. E. Wiechert, Elektrodynamische Elementargesetze, Arch. Néerl. Sci. Exactes Nat. 5:549–573 (1900).

    Google Scholar 

  107. Y. Yang, Classical solutions of the Born-Infeld theory, Proc. Roy. Soc. London A 456:615–640 (2000).

    Google Scholar 

  108. Y. Yang, Solitons in Field Theory and Nonlinear Analysis(Springer, New York, 2001).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kiessling, M.KH. Electromagnetic Field Theory Without Divergence Problems 1. The Born Legacy. Journal of Statistical Physics 116, 1057–1122 (2004). https://doi.org/10.1023/B:JOSS.0000037250.72634.2a

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JOSS.0000037250.72634.2a

Navigation