Skip to main content
Log in

Random Matrix Theory and the Anderson Model

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

This paper is devoted to a discussion of possible strategies to prove rigorously the existence of a metal-insulator Anderson transition for the Anderson model in dimension d≥3. The possible criterions used to define such a transition are presented. It is argued that at low disorder the lowest order in perturbation theory is described by a random matrix model. Various simplified versions for which rigorous results have been obtained in the past are discussed. It includes a free probability approach, the Wegner n-orbital model and a class of models proposed by Disertori, Pinson, and Spencer, Comm. Math. Phys. 232:83–124 (2002). At last a recent work by Magnen, Rivasseau, and the author, Markov Process and Related Fields 9:261–278 (2003) is summarized: it gives a toy modeldescribing the lowest order approximation of Anderson model and it is proved that, for d=2, its density of states is given by the semicircle distribution. A short discussion of its extension to d≥3 follows.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. P. W. Anderson, Absence of diffusion in certain random lattices, Phys. Rev. 109:1492–1505 (1958).

    Google Scholar 

  2. E. Abrahams, P. W. Anderson, D. C. Licciardello, and T. V. Ramakrishnan, Scaling theory of localization: Absence of quantum diffusion in two dimensions, Phys. Rev. Lett. 42:673–676 (1979).

    Google Scholar 

  3. M. Aizenman and S. Molchanov, Localisation at large disorder and at extreme energies: An elementary derivation, Comm. Math. Phys. 157:245–278 (1993).

    Google Scholar 

  4. M. Aizenman, Localisation at weak disorder: Some elementary bounds, Rev. Math. Phys. 6:1163–1182 (1994).

    Google Scholar 

  5. B. Altshuler and B. I. Shklovskii, Repulsion of energy levels and conductivity of small metal samples, Sov. Phys. JETP 64(1986).

  6. B. Altshuler and B. D. Simons, Universalities: From Anderson localization to quantum chaos, in Proceedings of the 1994 Summer Session LXI on Mesoscopic Quantum Physics, at Les Houches, Nato ASI, E. Akkermans, G. Montambaux, J.-L. Pichard, and J. Zinn-Justin, eds.

  7. A. Altland, C. R. Offer, and B. D. Simons, Quantum chaos: Lessons from disordered metals, a three lecture course in proceedings of the 1997 Summer School, in Disordered Systems and Quantum Chaos, held at the Issac Newton Institute in Cambridge, Nato ASI, I. V. Lerner, ed., pp. 127–135.

  8. A. V. Andreev, B. D. Simons, and B. L. Altshuler, Spectral correlations in disordered metals: Beyond universality, J. Math. Phys. 37:4968–4985 (1996).

    Google Scholar 

  9. C. W. J. Beenaker, Random matrix theory of quantum transport, Rev. Mod. Phys. 69:731–808 (1997).

    Google Scholar 

  10. J. Bellissard, Schrödinger's operators with an almost periodic potential: An overview, in Lecture Notes in Phys., Vol. 153 (Springer-Verlag, Berlin/Heidelberg/New York, 1982).

    Google Scholar 

  11. J. Bellissard, K-theory of C*-algebras in solid state physics, in Statistical Mechanics and Field Theory, Mathematical Aspects, T. C. Dorlas, M. N. Hugenholtz, and M. Winnink, eds., Lecture Notes in Physics, Vol. 257 (1986), pp. 99–156.

  12. J. Bellissard, Gap labelling theorems for Schrödinger's operators, in From Number Theory to Physics, Les Houches March 89, J. M. Luck, P. Moussa, and M. Waldschmidt, eds. (Springer, 1993), pp. 538–630.

  13. J. Bellissard, Coherent and dissipative transport in aperiodic solids, in Dynamics of Dissipation, P. Garbaczewski and R. Olkiewicz, eds., Lecture Notes in Physics, Vol. 597 (2003), pp. 413–486.

  14. J. Bellissard, Noncommutative Geometry of Aperiodic Solids, in Geometric and Topological Methods for Quantum Field Theory, (Villa de Leyva, 2001), pp. 86–156 World Sci. Publishing, River Edge, NJ, (2003).

    Google Scholar 

  15. J. Bellissard, J. Magnen, and V. Rivasseau, Supersymmetric analysis of a simplified two dimensional Anderson model at small disorder, Markov Process and Related Fields 9:261–278(2003).

    Google Scholar 

  16. J.-M. Combes,Connections between quantum dynamics and spectral properties of time evolution operators, in Differential Equations with Applications to Mathematical Physics, Math. Sci. Engrg., Vol. 192 (Academic Press, Boston, MA, 1993), pp. 59–68.

    Google Scholar 

  17. A. Connes, Sur la théorie non commutative de l'intégration, in Lecture Notes in Mathematics, Vol. 725 (Springer, Berlin/Heidelberg/New York, 1979).

    Google Scholar 

  18. A. Connes, Noncommutative Geometry(Academic Press, San Diego, 1994).

    Google Scholar 

  19. M. Disertori, H. Pinson, and T. Spencer, Density of states for random band matrix, Comm. Math. Phys. 232:83–124 (2002).

    Google Scholar 

  20. K. B. Efetov, Supersymmetry in Disorder and Chaos(Cambridge University Press, 1997).

  21. J. Fröhlich, T. Spencer, and B. Simon, Infrared bounds, phase transition, and continuous symmetry breaking, Comm. Math. Phys. 50:79–94 (1976).

    Google Scholar 

  22. J. Fröhlich, F. Martinelli, E. Scoppola, and T. Spencer, Constructive proof of localization in the Anderson tight binding model, Comm. Math. Phys. 101:21–46 (1985).

    Google Scholar 

  23. Y. V. Fyodorov, Negative moments of charateristic polynomials of random matrices: Ingham-Siegel integral as an alternative to Hubbard-Stratonovich transformation, Nucl. Phys. B 621:643–674 (2002).

    Google Scholar 

  24. F. Germinet and A. Klein, Bootstrap multiscale analysis and localization in random media, Comm. Math. Phys. 222:415–448 (2001).

    Google Scholar 

  25. I. Gold'sheid, S. Molchanov, and L. Pastur, Arandom homogeneous Schrödinger operator has a pure point spectrum, Funct. Anal. Appl. 11:1–10 (1977).

    Google Scholar 

  26. I. Guarneri, Spectral properties of quantum diffusion on discrete lattices, Europhys. Lett. 10:95–100 (1989).

    Google Scholar 

  27. I. Guarneri, On an estimate concerning quantum diffusion in the presence of a fractal spectrum, Europhys. Lett. 21:729–733 (1993).

    Google Scholar 

  28. I. Guarneri and G. Mantica, On the asymptotic properties of quantum dynamics in the presence of fractal spectrum, Ann. Inst. H. Poincaré 61:369–379 (1994).

    Google Scholar 

  29. F. Hiai and D. Petz, The Semicircle Law, Free Random Variables, and Entropy(American Mathematical Society, 2000).

  30. Y. Imry, Introduction to Mesoscopic Physics(Oxford Univ. Press, Oxford, 1997).

    Google Scholar 

  31. A. Khorunzhy and L. Pastur, Limits of infinite interaction radius, dimensionality, and the number of components for random operators with off-diagonal randomness, Comm. Math. Phys. 153:605–646 (1993).

    Google Scholar 

  32. A. Klein, Absolutely continuous spectrum in the Anderson model on the Bethe lattice, Math. Res. Lett. 1:399–407 (1994); The Anderson metal-insulator transition on the Bethe lattice, in XI International Congress of Mathematical Physics (Paris 1994)(Internat. Press, Cambridge, MA, 1995), pp. 383-391.

    Google Scholar 

  33. B. Kramer and A. MacKinnon, Localization: Theory and experiments, Rep. Prog. Phys. 56:1469–1564 (1993).

    Google Scholar 

  34. H. Kunz and B. Souillard, Sur le spectre des opérateurs aux différences finies aléatoires, Comm. Math. Phys. 78:201–246 (1980/81).

    Google Scholar 

  35. Y. Last, Quantum dynamics and decomposition of singular continuous spectra, J. Funct. Anal. 142:402–445 (1996).

    Google Scholar 

  36. J. Magnen, G. Poirot, and V. Rivasseau, The Anderson model as a matrix model, Nucl. Phys. B 58:149–162 (1997).

    Google Scholar 

  37. J. Magnen, G. Poirot, and V. Rivasseau, Ward type identities for the 2nd Anderson model at weak disorder, J. Stat. Phys. 93:331–358 (1998).

    Google Scholar 

  38. M. Mehta, Random Matrices, 2nd edn. (Academic Press, 1990).

  39. A. D. Mirlin, Statistics of energy levels and eigenfunctions in disordered and chaotic systems: Supersymmetry approach, in Proceedings of the International School of Physics Enrico Fermi, Course CXLIII, G. Casati, I. Guarneri, and U. Smilansky, eds. (IOS Press, Amsterdam, 2000), pp. 223–298 (see cond-mat/0006421).

    Google Scholar 

  40. P. Neu and R. Speicher, Rigorous mean field model for CPA: Anderson model with free random variables, J. Stat. Phys. 80:1279–1308 (1995).

    Google Scholar 

  41. L. Pastur and A. Figotin, Spectra of Random and Almost-Periodic Operators(Springer-Verlag, 1992).

  42. G. Poirot, Mean Green's function of the Anderson model at weak disorder with an infrared cutoff, Ann. Inst. Henri Poincaré 70:101–146 (1999).

    Google Scholar 

  43. S. Roche, D. Mayou, and G. Trambly de Laissardière, Electronic transport properties of quasicrystals, J. Math. Phys. 38:1794–1822 (1997).

    Google Scholar 

  44. S. Sakai, C*-algebras and W*-algebras, in Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 60 (Springer-Verlag, New York/Heidelberg, 1971).

    Google Scholar 

  45. L. Schäfer and F. J. Wegner, Disordered system with norbitals per site: Lagrange formulation, hyperbolic symmetry, and Goldstone modes, Z. Phyzik B 38:113–126 (1980).

    Google Scholar 

  46. M. Schreiber, U. Grimm, R. A. Roemer, and J.-X. Zhong, Energy levels of quasiperiodic Hamiltonians, spectral unfolding, and random matrix theory, Comp. Phys. Commun. 121-122:499–501 (1999).

    Google Scholar 

  47. H. Schulz-Baldes and J. Bellissard, Anomalous transport: A mathematical framework, Rev. Math. Phys. 10:1–46 (1998).

    Google Scholar 

  48. M. Shubin, The spectral theory and the index of elliptic operators with almost periodic coefficients, Russ. Math. Surv. 34:109–157 (1979).

    Google Scholar 

  49. B. Simon, Cyclic vectors in the Anderson model, Rev. Math. Phys. 6:1183–1185 (1994).

    Google Scholar 

  50. R. Strichartz, Fourier asymptotics of fractal measures, J. Funct. Anal. 89:154–187 (1990).

    Google Scholar 

  51. F. Wegner, Disordered system with norbitals per site: n=. limit, Phys. Rev. B 19:783–792 (1979).

    Google Scholar 

  52. I. Kh. Zharekeshev, M. Batsch, and B. Kramer, Crossover of level statistics between strong and weak localization in two dimensions, Europhys. Lett 34:587–592 (1996).

    Google Scholar 

  53. D. Voiculescu, K. Dykema, and A. Nica, Free Random Variables(AMS, Providence, Rhode Island, 1992).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bellissard, J. Random Matrix Theory and the Anderson Model. Journal of Statistical Physics 116, 739–754 (2004). https://doi.org/10.1023/B:JOSS.0000037246.61440.6c

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JOSS.0000037246.61440.6c

Navigation