Skip to main content
Log in

Partition Function Zeros at First-Order Phase Transitions: Pirogov—Sinai Theory

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

This paper is a continuation of our previous analysis(2) of partition functions zeros in models with first-order phase transitions and periodic boundary conditions. Here it is shown that the assumptions under which the results of ref. 2 were established are satisfied by a large class of lattice models. These models are characterized by two basic properties: The existence of only a finite number of ground states and the availability of an appropriate contour representation. This setting includes, for instance, the Ising, Potts, and Blume–Capel models at low temperatures. The combined results of ref. 2 and the present paper provide complete control of the zeros of the partition function with periodic boundary conditions for all models in the above class.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. M. Biskup, C. Borgs, J. T. Chayes, L. J. Kleinwaks, and R. Koteck$#x00FD;, General theory of Lee-Yang zeros in models with first-order phase transitions, Phys. Rev. Lett. 84:4794–4797 (2000).

    Google Scholar 

  2. M. Biskup, C. Borgs, J. T. Chayes, L. J. Kleinwaks, and R. Koteck$#x00FD;, Partition function zeros at first-order phase transitions: A general theory, to appear in Commun. Math. Phys.

  3. M. Biskup, C. Borgs, J. T. Chayes, and R. Koteck$#x00FD;, Phase diagrams of Potts models in external fields: I. Real fields, in preparation.

  4. M. Biskup, C. Borgs, J. T. Chayes, and R. Koteck$#x00FD;, Phase diagrams of Potts models in external fields: II. One complex field, in preparation.

  5. C. Borgs and J. Z. Imbrie, A unified approach to phase diagrams in field theory and statistical mechanics, Commun. Math. Phys. 123:305–328 (1989).

    Google Scholar 

  6. C. Borgs and R. Koteck$#x00FD;, A rigorous theory of finite-size scaling at first-order phase transitions, J. Stat. Phys. 61:79–119(1990).

    Google Scholar 

  7. R. L. Dobrushin, Estimates of semiinvariants for the Ising model at low temperatures, in Topics in Statistical and Theoretical Physics, R. L. Dobrushin et al., eds., F. A. Berezin Memorial Volume, Transl. Ser. 2, Vol. 177(32) (Amer. Math. Soc., 1996), pp. 59–81.

  8. H.-O. Georgii, Gibbs Measures and Phase Transitions, de Gruyter Studies in Mathematics, Vol. 9 (Walter de Gruyter, Berlin, 1988).

    Google Scholar 

  9. R. Koteck$#x00FD; and D. Preiss, An inductive approach to PS theory, Proc. Winter School on Abstract Analysis, Suppl. ai Rend. del Mat. di Palermo (1983).

  10. R. Koteck$#x00FD; and D. Preiss, Cluster expansion for abstract polymer models, Commun. Math. Phys. 103:491–498 (1986).

    Google Scholar 

  11. T. D. Lee and C. N. Yang, Statistical theory of equations of state and phase transitions: II. Lattice gas and Ising model,Phys. Rev. Lett. 87:410 (1952).

    Google Scholar 

  12. E. H. Lieb, private communication.

  13. E. H. Lieb and A. D. Sokal, A general Lee-Yang theorem for one-component and multicomponent ferromagnets, Commun. Math. Phys. 80:153–179 (1981).

    Google Scholar 

  14. S. Miracle-Sole, On the convergence of cluster expansions, Physica A 279:244–249 (2000).

    Google Scholar 

  15. J. Navratil, Contour models and unicity of random fields (in Czech), Diploma Thesis, Charles University, Prague (1982).

    Google Scholar 

  16. S. A Pirogov and Ya. G. Sinai, Phase diagrams of classical lattice systems, Theor. Math. Phys. 25:358–369 (1975). [In Russian]

    Google Scholar 

  17. S. A Pirogov and Ya. G. Sinai, Phase diagrams of classical lattice systems. Continuation, Theor. Math. Phys. 26:61–76 (1976). [In Russian]

    Google Scholar 

  18. D. Ruelle, Thermodynamic Formalism(Addison-Wesley, London, Amsterdam, Don Mills, Sydney, Tokyo, 1978).

    Google Scholar 

  19. E. Seiler, Gauge theories as a problem of constructive quantum field theory and statistical mechanics, in Lecture Notes in Physics, Vol. 159 (Springer, Berlin, Heidelberg, New York, 1982).

    Google Scholar 

  20. Ya. G. Sinai, Theory of Phase Transitions: Rigorous Results(Pergamon Press, New York, 1982).

    Google Scholar 

  21. M. Zahradn$#x00ED;k, An alternate version of Pirogov-Sinai theory, Commun. Math. Phys. 93:559–581 (1984).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Biskup, M., Borgs, C., Chayes, J.T. et al. Partition Function Zeros at First-Order Phase Transitions: Pirogov—Sinai Theory. Journal of Statistical Physics 116, 97–155 (2004). https://doi.org/10.1023/B:JOSS.0000037243.48527.e3

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JOSS.0000037243.48527.e3

Navigation