Skip to main content
Log in

Geometric Analysis of Bifurcation and Symmetry Breaking in a Gross—Pitaevskii Equation

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

Gross–Pitaevskii and nonlinear Hartree equations are equations of nonlinear Schrödinger type that play an important role in the theory of Bose–Einstein condensation. Recent results of Aschbacher et al.(3) demonstrate, for a class of 3-dimensional models, that for large boson number (squared L 2norm), \(N\), the ground state does not have the symmetry properties of the ground state at small \(N\). We present a detailed global study of the symmetry breaking bifurcation for a 1-dimensional model Gross–Pitaevskii equation, in which the external potential (boson trap) is an attractive double-well, consisting of two attractive Dirac delta functions concentrated at distinct points. Using dynamical systems methods, we present a geometric analysis of the symmetry breaking bifurcation of an asymmetric ground state and the exchange of dynamical stability from the symmetric branch to the asymmetric branch at the bifurcation point.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. R. Adami, C. Bardos, F. Golse, and A. Teta, Towards a rigorous derivation of the cubic NLSe in dimension one, preprint (2003).

  2. S. Albeverio, F. Gesztesy, R. Høegh-Krohn, and H. Holden, Solvable Models in Quantum Mechanics(Springer-Verlag, New York, 1988).

    Google Scholar 

  3. W. H. Aschbacher, J. Fröhlich, G. M. Graf, K. Schnee, and M. Troyer, Symmetry breaking regime in the nonlinear Hartree equation, J. Math. Phys. 43:3879–3891 (2002).

    Google Scholar 

  4. R. D'Agosta and C. Presilla, States without a linear counterpart in Bose-Einstein condensates, Phys. Rev. A 65:043609 (2002).

    Google Scholar 

  5. F. Dalfovo, S. Giorgini, L. P. Pitaevskii, and S. Stringari, Theory of Bose-Einstein condensation in trapped gases, Rev. Modern Phys. 71:463–512 (1999).

    Google Scholar 

  6. L. Erdös and H. T. Yau, Derivation of the nonlinear Schrödinger equation from a many body Coulomb system, Adv. Theor. Math. Phys. 5:1169–1205 (2001).

    Google Scholar 

  7. A. Floer and A. Weinstein, Nonspreading wave packets for the cubic Schrödinger equation with a bounded potential, J. Funct. Anal. 69:397–408 (1986).

    Google Scholar 

  8. Yu. B. Gaididei, S. F. Mingaleev, and P. L. Christiansen, Curvature-induced symmetry breaking in nonlinear Schrödinger models, Phys. Rev. E 62:R53–R55 (2000).

    Google Scholar 

  9. R. H. Goodman, P. J. Holmes, and M. I. Weinstein, Strong NLS soliton-defect interactions, submitted to Physica D(2003).

  10. M. Grillakis, Analysis of the linearization around a critical point of an infinite dimesional Hamiltonian system, Comm. Pure Appl. Math. 43:299–333 (1990).

    Google Scholar 

  11. J. Guckenheimer and P. Holmes, Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields(Springer, New York, 1990).

    Google Scholar 

  12. C. K. R. T. Jones, Instability of standing waves for non-linear Schrödinger-type equations, Ergodic Theory Dynam. Systems 8:119–138 (1988).

    Google Scholar 

  13. T. Kato and G. Ponce, Commutator estimates and the Euler and Navier-Stokes equations, Comm. Pure Appl. Math. 41:891–907 (1988).

    Google Scholar 

  14. E. H. Lieb, R. Seiringer, and J. Yngvason, Arigorous derivation of the Gross-Pitaevskii energy functional for a two-dimensional Bose gas, Comm. Math. Phys. 224:17–31 (2001).

    Google Scholar 

  15. K. W. Mahmud, J. N. Kutz, and W. P. Reinhardt, Bose-Einstein condensates in a onedimensional double square well: Analytical solutions of the nonlinear Schrödinger equation, Phys. Rev. A 66:063607 (2002).

    Google Scholar 

  16. Y.-G. Oh, Stability of semiclassical bound states of nonlinear Schrödinger equations with potentials, Comm. Math. Phys. 121:11–33 (1989).

    Google Scholar 

  17. H. A. Rose and M. I. Weinstein, On the bound states of the nonlinear Schrödinger equation with a linear potential, Physica D 30:207–218 (1988).

    Google Scholar 

  18. A. Soffer and M. I. Weinstein, Resonances and radiation damping in Hamiltonian nonlinear wave equations, Invent. Math. 136:9–74 (1999).

    Google Scholar 

  19. A. Soffer and M. I. Weinstein, Selection of the ground state in nonlinear Schrödinger equations, submitted (2001). http://arxiv.org/abs/nlin/0308020

  20. R. Weder, The Wk, p continuity of the Schrödinger wave operators on the line, Comm. Math. Phys. 208:507–520 (1999).

    Google Scholar 

  21. M. I. Weinstein, Modulational stability of ground states of nonlinear Schrödinger equations, SIAM J. Math. Anal. 16:472–491 (1985).

    Google Scholar 

  22. M. I. Weinstein,Lyapunov stability of ground states of nonlinear dispersive evolution equations, Comm. Pure Appl. Math. 39:51–68 (1986).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jackson, R.K., Weinstein, M.I. Geometric Analysis of Bifurcation and Symmetry Breaking in a Gross—Pitaevskii Equation. Journal of Statistical Physics 116, 881–905 (2004). https://doi.org/10.1023/B:JOSS.0000037238.94034.75

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JOSS.0000037238.94034.75

Navigation