Skip to main content
Log in

Ferromagnetic Ordering of Energy Levels

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We study a natural conjecture regarding ferromagnetic ordering of energy levels in the Heisenberg model which complements the Lieb–Mattis Theorem of 1962 for antiferromagnets: for ferromagnetic Heisenberg models the lowest energies in each subspace of fixed total spin are strictly ordered according to the total spin, with the lowest, i.e., the ground state, belonging to the maximal total spin subspace. Our main result is a proof of this conjecture for the spin-1/2 Heisenberg XXX and XXZ ferromagnets in one dimension. Our proof has two main ingredients. The first is an extension of a result of Koma and Nachtergaele which shows that monotonicity as a function of the total spin follows from the monotonicity of the ground state energy in each total spin subspace as a function of the length of the chain. For the second part of the proof we use the Temperley–Lieb algebra to calculate, in a suitable basis, the matrix elements of the Hamiltonian restricted to each subspace of the highest weight vectors with a given total spin. We then show that the positivity properties of these matrix elements imply the necessary monotonicity in the volume. Our method also shows that the first excited state of the XXX ferromagnet on any finite tree has one less than maximal total spin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. F. C. Alcaraz, S. R. Salinas, and W. F. Wreszinski, Anisotropic ferromagnetic quantum domains, Phys. Rev. Lett 75:930–933 (1995).

    Google Scholar 

  2. P. Caputo and F. Martinelli, Relaxation time of anisotropic simple exclusion processes and quantum Heisenberg models, Ann. Appl. Probab. 13:691–721 (2003).

    Google Scholar 

  3. A. Dhar and B. S. Shastry, Bloch walls and macroscopic string states in Bethe's solution of the Heisenberg ferromagnetic linear chain, Phys. Rev. Lett. 85:2813–2816 (2000).

    Google Scholar 

  4. F. Dyson, E. H. Lieb, and B. Simon, Phase transitions in quantum spin systems with isotropic and non-isotropic interactions, J. Stat. Phys. 18:335–383 (1978).

    Google Scholar 

  5. J. Fröhlich, B. Simon, and T. Spencer, Infrared bounds, phase transitions and continuous symmetry breaking, Comm. Math. Phys. 50:79–95 (1976).

    Google Scholar 

  6. C. T. Gottstein and R. F. Werner, Groundstates of the q-deformed Heisenberg ferromagnet, preprint (1994), cond-mat/9501123.

  7. L.-H. Gwa and H. Spohn, Bethe solution for the dynamical-scaling exponent of the noisy Burgers equation, Phys. Rev A 46:844–854 (1992).

    Google Scholar 

  8. T. Kennedy, E. H. Lieb, and S. Shastry, Existence of Néel order in some spin 1/2 Heisenberg antiferromagnets, J. Stat. Phys. 53:1019–1030 (1988).

    Google Scholar 

  9. T. Kennedy, E. H. Lieb, and S. Shastry, The XY model has long-range order for all spins and all dimensions greater than one, Phys. Rev. Lett. 61:2582–2584 (1988).

    Google Scholar 

  10. T. Koma and B. Nachtergaele, The spectral gap of the ferromagnetic XXZ chain, Lett. Math. Phys. 40:1–16 (1997), cond-mat/9512120.

    Google Scholar 

  11. T. Koma and B. Nachtergaele, The complete set of ground states of the ferromagnetic XXZ chains, Adv. Theor. Math. Phys. 2:533–558 (1998), cond-mat/9709208.

    Google Scholar 

  12. E. H. Lieb, The residual entropy of square ice, Phys. Rev. 162:162–172 (1967).

    Google Scholar 

  13. E. H. Lieb, Two theorems on the Hubbard model, Phys. Rev. Lett. 62:1201–1204 (1989).

    Google Scholar 

  14. E. H. Lieb and D. Mattis, Ordering energy levels of interacting spin systems, J. Math. Phys. 3:749–751 (1962).

    Google Scholar 

  15. E. H. Lieb and B. Nachtergaele, The stability of the Peierls instability for ring shaped molecules, Phys. Rev. B 51:4777–4791 (1995).

    Google Scholar 

  16. E. H. Lieb and P. Schupp, Ground state properties of a fully frustrated quantum spin system, Phys. Rev. Lett. 83:5362–5365 (1999).

    Google Scholar 

  17. N. Macris and B. Nachtergaele, On the flux phase conjecture at half-filling: An improved proof, J. Stat. Phys. 85:745–761 (1996).

    Google Scholar 

  18. B. Morris, The mixing time for simple exclusion, preprint.

  19. B. Nachtergaele and L. Slegers, Construction of equilibrium states for one-dimensional classical lattice systems, Il Nuovo Cimento B 100:757–779 (1987).

    Google Scholar 

  20. B. Nachtergaele and S. Starr, Droplet states in the XXZ Heisenberg chain, Comm. Math. Phys. 218:567–607 (2001).

    Google Scholar 

  21. E. Jordão Neves and J. Fernando Perez, Long range order in the ground state of twodimensionsal antiferromagnets, Phys. Lett. A 114:331–333 (1986).

    Google Scholar 

  22. B. Simon, The Statistical Mechanics of Lattice Gases, Vol. 1 (Princeton University Press, 1993).

  23. E. R. Speer, Failure of reflection positivity in the quantum Heisenberg ferromagnet, Lett. Math. Phys. 10:41–47 (1985).

    Google Scholar 

  24. H. N. V. Temperley and E. H. Lieb, Relations between the ''percolation'' and ''colouring'' problem and other graph-theoretical problems associated with regular planar lattices: Some exact results for the ''percolation'' problem, Proc. Roy. Soc. A 322:252–280 (1971).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nachtergaele, B., Spitzer, W. & Starr, S. Ferromagnetic Ordering of Energy Levels. Journal of Statistical Physics 116, 719–738 (2004). https://doi.org/10.1023/B:JOSS.0000037227.24460.e5

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JOSS.0000037227.24460.e5

Navigation