Skip to main content
Log in

Continuum Nonsimple Loops and 2D Critical Percolation

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

Substantial progress has been made in recent years on the 2D critical percolation scaling limit and its conformal invariance properties. In particular, chordal SLE 6(the Stochastic Loewner Evolution with parameter κ=6) was, in the work of Schramm and of Smirnov, identified as the scaling limit of the critical percolation “exploration process.” In this paper we use that and other results to construct what we argue is the fullscaling limit of the collection of allclosed contours surrounding the critical percolation clusters on the 2D triangular lattice. This random process or gas of continuum nonsimple loops in Bbb R2is constructed inductively by repeated use of chordal SLE 6. These loops do not cross but do touch each other—indeed, any two loops are connected by a finite “path” of touching loops.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. H. Kesten, Percolation Theory for Mathematicians(Birkhäuser, Boston, 1982).

    Google Scholar 

  2. G. R. Grimmett, Percolation, second edition(Springer, Berlin, 1999).

    Google Scholar 

  3. O. Schramm, Scaling limits of loop-erased random walks and uniform spanning trees, Israel J. Math. 118:221–288 (2000).

    Google Scholar 

  4. S. Smirnov, Critical percolation in the plane:Conformal invariance, Cardy's formula, scaling limits, C. R. Acad. Sci. Paris 333:239–244 (2001).

    Google Scholar 

  5. G. Lawler, O. Schramm, and W. Werner, Values of Brownian intersection exponents I: Half-plane exponents, Acta Math. 187:237–273 (2001).

    Google Scholar 

  6. G. Lawler, O. Schramm, and W. Werner, Values of Brownian intersection exponents II: Plane exponents, Acta Math. 187:275–308 (2001).

    Google Scholar 

  7. G. Lawler, O. Schramm, and W. Werner, Values of Brownian intersection exponents III: Two-sided exponents, Ann. Inst. Henri Poincaré 38:109–123 (2002).

    Google Scholar 

  8. G. Lawler, O. Schramm, and W. Werner, Analyticity of intersection exponents for planar Brownian motion, Acta Math. 189:179–201 (2002).

    Google Scholar 

  9. G. Lawler, O. Schramm, and W. Werner, One arm exponent for critical 2D percolation, Electronic J. Probab. 7:2 (2002).

    Google Scholar 

  10. G. Lawler, O. Schramm, and W. Werner, Conformal invariance of planar loop-erased random walk and uniform spanning trees, Ann. Prob., to appear, preprint arXiv: math.PR/0112234 (2003).

  11. G. Lawler, O. Schramm, and W. Werner, Conformal restriction:The chordal case, J. Amer. Math. Soc., arXiv:math.PR/0209343 16:417–955 (2003).

    Google Scholar 

  12. S. Smirnov and W. Werner, Critical exponents for two-dimensional percolation, Math. Rev. Lett. 8:729–744 (2001).

    Google Scholar 

  13. G. Lawler, Conformally Invariant Processes, Lecture notes for the ICTP School of Probability (2002).

  14. W. Werner, Random Planar Curves and Schramm-Loewner Evolutions, Lecture notes from the 2002 Saint-Flour summer school (Springer, 2003), to appear, preprint arXiv: math.PR/0204277.

  15. M. Aizenman, Scaling limit for the incipient spanning clusters, in Mathematics of Multiscale Materials; The IMA Volumes in Mathematics and its Applications, K. Golden, G. Grimmett, R. James, G. Milton, and P. Sen, eds. (Springer, 1998).

  16. M. Aizenman and A. Burchard, Hölder regularity and dimension bounds for random curves, Duke Math. J. 99:419–453 (1999).

    Google Scholar 

  17. M. Aizenman, A. Burchard, C. M. Newman, and D. B. Wilson, Scaling limits for minimal and random spanning trees in two dimensions, Ran. Structures Alg. 15:316–367 (1999).

    Google Scholar 

  18. S. Smirnov, Critical percolation in the plane. I. Conformal invariance and Cardy's formula. II. Continuum scaling limit (long version of ref. 4, dated Nov. 15, 2001), available at http://www.math.kth.se/ ' stas/papers/index.html.

  19. F. Camia, C. M. Newman, and V. Sidoravicius, A particular bit of universality:Scaling limits of some dependent percolation models, Comm. Math. Phys., to appear (2004).

  20. H. Kesten, V. Sidoravicius, and Y. Zhang, Almost all words are seen in critical site percolation on the triangular lattice, Electr. J. Probab. 3(1998), 10 pp.

    Google Scholar 

  21. T. Grossman and A. Aharony, Structure and perimeters of percolation clusters, J. Phys. A 19:L745–L751 (1986).

    Google Scholar 

  22. T. Grossman and A. Aharony, Accessible external perimeter of percolation clusters, J. Phys. A 20:L1193–L1201 (1987).

    Google Scholar 

  23. M. Aizenman, B. Duplantier, and A. Aharony, Connectivity exponents and the external perimeter in 2Dindependent percolation, Phys. Rev. Lett. 83:1359–1362 (1999).

    Google Scholar 

  24. J. L. Cardy, Critical percolation in finite geometries, J. Phys. A 25:L201–L206 (1992).

    Google Scholar 

  25. J. Cardy, Lectures on Conformal Invariance and Percolation, preprint arXiv:math-ph/ 0103018 (2001).

  26. S. Rohde and O. Schramm, Basic properties of SLE, Ann. Math., to appear, preprint arXiv:math.PR0106036 (2003).

  27. W. Werner, Critical exponents, conformal invariance and planar Brownian motion, in Proceedings of the 3rd Europ. Congress of Math., Prog. Math., Vol. 202 (2001), pp. 87–103.

    Google Scholar 

  28. G. Lawler and W. Werner, Universality for conformally invariant intersection exponents, J. Eur. Math. Soc. 2:291–328 (2000).

    Google Scholar 

  29. L. Russo, A note on percolation, Z. Wahrsch. Ver. Geb. 43:39–48 (1978).

    Google Scholar 

  30. P. D. Seymour and D. J. A. Welsh, Percolation probabilities on the square lattice, in Advances in Graph Theory, Annals of Discrete Mathematics, Vol. 3, B. Bollobás, ed. (North-Holland, Amsterdam, 1978), pp. 227–245.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Camia, F., Newman, C.M. Continuum Nonsimple Loops and 2D Critical Percolation. Journal of Statistical Physics 116, 157–173 (2004). https://doi.org/10.1023/B:JOSS.0000037221.31328.75

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JOSS.0000037221.31328.75

Navigation