Skip to main content
Log in

Some Considerations on the Derivation of the Nonlinear Quantum Boltzmann Equation

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

In this paper we analyze a system of Nidentical quantum particles in a weak-coupling regime. The time evolution of the Wigner transform of the one-particle reduced density matrix is represented by means of a perturbative series. The expansion is obtained upon iterating the Duhamel formula. For short times, we rigorously prove that a subseries of the latter, converges to the solution of the Boltzmann equation which is physically relevant in the context. In particular, we recover the transition rate as it is predicted by Fermi's Golden Rule. However, we are not able to prove that the quantity neglected while retaining a subseries of the complete original perturbative expansion, indeed vanishes in the limit: we only give plausibility arguments in this direction. The present study holds in any space dimension d≥2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. N. W. Ashcroft and N. D. Mermin, Solid State Physics(Saunders, Philadelphia, 1976).

    Google Scholar 

  2. A. Bohm, Quantum Mechanics, Texts and monographs in Physics (Springer-Verlag, 1979).

  3. C. Boldrighini, L. A. Bunimovich, and Ya. Sinai, On the Boltzmann equation for the Lorentzgas, J. Stat. Phys. 32:477–501 (1983).

    Google Scholar 

  4. J. Bourgain, F. Golse, and B. Wennberg, On the distribution of free path lengths for the periodic Lorentzgas, Comm. Math. Phys. 190:491–508 (1998).

    Google Scholar 

  5. F. Castella, From the von Neumann equation to the Quantum Boltzmann equation in a deterministic framework, J. Stat. Phys. 104:387–447 (2001).

    Google Scholar 

  6. F. Castella, From the von Neumann equation to the Quantum Boltzmann equation II: Identifying the Born series, J. Stat. Phys. 106:1197–1220 (2002).

    Google Scholar 

  7. F. Castella and A. Plagne, A distribution result for slices of sums of squares, Math. Proc. Cambridge Philos. Soc. 132:1–22 (2002).

    Google Scholar 

  8. F. Castella and A. Plagne, Non-derivation of the Quantum Boltzmann equation from the periodic Schrödinger equation, to appear in Indiana Univ. Math. J.(2003).

  9. S. Chapman and T. G. Cowling, The Mathematical Theory of Non-Uniform Gases(Cambridge Univ. Press, Cambridge, England, 1970).

    Google Scholar 

  10. C. Cercignani, R. Illner, and M. Pulvirenti, The Mathematical Theory of Dilute Gases, Applied Mathematical Sciences, Vol. 106 (Springer-Verlag, New York, 1994).

    Google Scholar 

  11. S. L. Chuang, Physics of Optoelectronic Devices, Wiley Series in Pure and Applied Optics (New York, 1995).

  12. C. Cohen-Tannoudji, B. Diu, and F. Laloë, Mécanique Quantique, I et II, Enseignement des Sciences, Vol. 16 (Hermann, 1973).

  13. M. Combescot, On the generalized golden rule for transition probabilities, Phys. A: Math. Gen. 34:6087–6104 (2001).

    Google Scholar 

  14. R. Dümcke, The low density limit for an N-level system interacting with a free Bose or Fermi gas, Comm. Math. Phys. 97:331–359 (1985).

    Google Scholar 

  15. D. Dürr, S. Goldstein, and J. L. Lebowitz, Asymptotic motion of a classical particle in a random potential in two dimension: The Landau model, Comm. Math. Phys. 113:209–230 (1987).

    Google Scholar 

  16. L. Erdös, M. Salmhofer, and H.-T. Yau, On the Quantum Boltzmann Equation, Mathematical Physics Archive, 03–56 (University of Texas, 2003).

  17. L. Erdös and H. T. Yau, Linear Boltzmann equation as scaling limit of quantum Lorentz gas, in Advances in Differential Equations and Mathematical Physics (Atlanta, GA, 1997), Contemp. Math., Vol. 217 (Amer. Math. Soc., Providence, RI, 1998), pp. 137–155.

    Google Scholar 

  18. L. Erdös and H. T. Yau, Linear Boltzmann equation as the weak coupling limit of a random Schrödinger equation, Comm. Pure Appl. Math. 53:667–735 (2000).

    Google Scholar 

  19. R. Esposito, M. Pulvirenti, and A. Teta, The Boltzmann equation for a one-dimensional quantum Lorentzgas, Comm. Math. Phys. 204:619–649 (1999); Erratum, Comm. Math. Phys. 214:493-494 (2000).

    Google Scholar 

  20. M. V. Fischetti, Theory of electron transport in small semiconductor devices using the Pauli master equations, J. Appl. Phys. 83:270–291 (1998).

    Google Scholar 

  21. G. Gallavotti, Time Evolution Problems in Classical Statistical Mechanics and the Wind-Tree-Model, Cargese Lectures in Physics, Vol. IV, D. Kastler, ed. (Gordon & Breach, Paris, 1970); Divergences and approach to equilibrium in the Lorenzand the wind-tree models, Phys. Rev. 185:308-322 (1969). See also the book Statistical Mechanics, Appendix A2 to Ch. 1 (Springer-Verlag, 1999).

    Google Scholar 

  22. T. G. Ho, L. J. Landau, and A. J. Wilkins, On the weak coupling limit for a Fermi gas in a random potential, Rev. Math. Phys. 5:209–298 (1993).

    Google Scholar 

  23. L. Hörmander, The Analysis of Linear Partial Differential Operators(Springer-Verlag, Berlin, 1994).

    Google Scholar 

  24. K. Huang, Statistical Mechanics(Wiley, 1963).

  25. R. Illner and M. Pulvirenti, Global Validity of the Boltzmann equation for a two dimensional rare gas in vacuum, Comm. Math. Phys. 105:189–203 (1986); Erratum and improved result, Comm. Math. Phys. 121:143-146 (1989).

    Google Scholar 

  26. J. B. Keller, G. Papanicolaou, and L. Ryzhik, Transport equations for elastic and other waves in random media, Wave Motion 24:327–370 (1996).

    Google Scholar 

  27. W. Kohn and J. M. Luttinger, Phys. Rev. 108:590 (1957).

    Google Scholar 

  28. W. Kohn and J. M. Luttinger, Phys. Rev. 109:1892 (1958).

    Google Scholar 

  29. R. Kubo, J. Phys. Soc. Jap. 12:000–000 (1958).

    Google Scholar 

  30. O. Lanford, III, Time Evolution of Large Classical Systems, Lecture Notes in Physics, Vol. 38, E. J. Moser, ed. (Springer-Verlag, 1975), pp. 1–111.

  31. L. J. Landau, Observation of quantum particles on a large space-time scale, J. Stat. Phys. 77:259–309 (1994).

    Google Scholar 

  32. P. A. Markowich, C. Ringhofer, and C. Schmeiser, Semiconductor Equations(Springer-Verlag, Vienna, 1990).

    Google Scholar 

  33. F. Nier, Asymptotic analysis of a scaled Wigner equation and quantum scattering, Transp. Theor. Stat. Phys. 24:591–629 (1995).

    Google Scholar 

  34. F. Nier, A semi-classical picture of quantum scattering, Ann. Sci. Ec. Norm. Sup., 4. Sér. 29:149–183 (1996).

    Google Scholar 

  35. F. Poupaud and A. Vasseur, Classical and Quantum Transport in Random Media, preprint (University of Nice, 2001).

  36. W. Pauli, Festschrift zum 60. Geburtstage A. Sommerfelds(Hirzel, Leipzig, 1928), p. 30.

    Google Scholar 

  37. M. Reed and B. Simon, Methods of Modern Mathematical Physics III . Scattering Theory(Academic Press, New York/London, 1979).

    Google Scholar 

  38. E. Rosencher and B. Vinter, Optoelectronique(Dunod, 2002).

  39. H. Spohn, Derivation of the transport equation for electrons moving through random impurities, J. Stat. Phys. 17:385–412 (1977).

    Google Scholar 

  40. H. Spohn, Large Scale Dynamics of Interacting Particles(Springer, 1991).

  41. H. Spohn, Kinetic equations from Hamiltonian dynamics: Markovian limits, Rev. Modern Phys. 52:569–615 (1980).

    Google Scholar 

  42. H. Spohn, Quantum kinetic equations, in On Three Levels: Micro-Meso and Macro Approaches in Physics, Vol. 324, M. Fannes, C. Maes, and A. Verbeure, eds., Nato ASI Series B: Physics (1994), pp. 1–10.

  43. L. Van Hove, Physica 21:517 (1955).

    Google Scholar 

  44. L. Van Hove, Physica 23:441 (1957).

    Google Scholar 

  45. L. Van Hove, in Fundamental Problems in Statistical Mechanics, E. G. D. Cohen, ed. (1962), p. 157.

  46. R. Zwanzig, Quantum Statistical Mechanics, P. H. E. Meijer, ed. (Gordon & Breach, New York, 1966).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Benedetto, D., Castella, F., Esposito, R. et al. Some Considerations on the Derivation of the Nonlinear Quantum Boltzmann Equation. Journal of Statistical Physics 116, 381–410 (2004). https://doi.org/10.1023/B:JOSS.0000037205.09518.3f

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JOSS.0000037205.09518.3f

Navigation