Skip to main content
Log in

Energies of a Kinked Crack Line

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

This article finds the energy of slightly kinked crack fronts in order to find the rate at which thermal fluctuations cause cracks to creep in three-dimensional settings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. D. Bensimon, L. P. Kadanoff, S. Liang, and B. I. Shraiman, Viscous flows in two dimensions, Rev. Mod. Phys. 58:977–99 (1986).

    Google Scholar 

  2. R. Thomson, C. Hsieh, and V. Rana, Lattice trapping of fracture cracks, J. Appl. Phys. 42(8):3154–3160 (1971).

    Google Scholar 

  3. R. Thomson, The physics of fracture, Solid State Physics 39:1–129 (1986).

    Google Scholar 

  4. J. J. Gilman and H. C. Tong, Quantum tunneling as an elementary fracture process, J. Appl. Phys. 42:3479–3486 (1971).

    Google Scholar 

  5. J. E. Sinclair, The influence of the interatomic force law and of kinks on the propagation of brittle cracks, Philosophical Magazine 31:647–71 (1975).

    Google Scholar 

  6. A. S. Krausz and J. Mshana, The steady state fracture kinetics of crack front spreading, Inter. J. Fract. 19:277–93 (1982).

    Google Scholar 

  7. I. H. Lin and J. P. Hirth, On brittle crack advance by double kink nucleation, J. Mater. Sci. 17:447–60 (1982).

    Google Scholar 

  8. Sharad Ramanathan and Daniel S. Fisher, Dynamics and instabilities of planar tensile cracks in heterogeneous media, Phys. Rev. Lett. 79:877–880 (1997).

    Google Scholar 

  9. C. Hsieh and R. Thomson, Lattice theory of fracture and crack creep, J. Appl. Phys. 44:2051–2063 (1973).

    Google Scholar 

  10. B. R. Lawn, An atomistic model of kinetic crack growth in brittle solids, J. Mater. Sci. 10:469–80 (1975).

    Google Scholar 

  11. A. J. Markworth and J. P. Hirth, An atomistic model of crack extension by kink propagation, J. Mater. Sci. 16:3405–17 (1981).

    Google Scholar 

  12. R. Thomson, V. K. Tewary, and K. Masuda-Jindo, Theory of chemically induced kink formation on cracks in silica. I. 3-d crack Green's functions, J. Mater. Res. 2:619–30 (1987).

    Google Scholar 

  13. D. Holland and M. Marder, Ideal brittle fracture of silicon studied with molecular dynamics, Phys. Rev. Lett. 80:746–749 (1998).

    Google Scholar 

  14. M. Marder and S. P. Gross, Origin of crack tip instabilities, J. Mech. Phys. Solids 43:1–48 (1995).

    Google Scholar 

  15. Michael Marder, Statistical mechanics of cracks, Phys. Rev. E 54:3442–3454 (1996).

    Google Scholar 

  16. E. N. Economou, Green's Functions in Quantum Physics (Springer-Verlag, Berlin, 1983).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marder, M. Energies of a Kinked Crack Line. Journal of Statistical Physics 93, 511–525 (1998). https://doi.org/10.1023/B:JOSS.0000033239.22129.c1

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JOSS.0000033239.22129.c1

Navigation